Description
4000093-510 Safety Instrumented System (SIS)
4000093-510 Safety Instrumented System (SIS)
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
Application Scheme of Industrial Ethernet Remote IO Module in Intelligent Manufacturing Workshop
With the advent of Industry 4.0, intelligent manufacturing has become a trend in industrial production. Intelligent manufacturing requires efficient, stable, and reliable industrial Ethernet remote IO modules to monitor the production process. This article will share an application case of an intelligent manufacturing workshop based on industrial Ethernet remote IO module.4000093-510 Safety Instrumented System (SIS)
The production process of this intelligent manufacturing workshop is mainly divided into two parts: injection molding and automated assembly. The injection molding process requires controlling parameters such as the melting temperature of the melt, the speed and pressure of the injection molding machine. The automated assembly process requires controlling the actions of the assembly robot and detecting the quality of the product. In addition to these production process data, there are also equipment production data such as daily and weekly production in the workshop, as well as equipment status data such as operation, manual, automatic, mold adjustment, and alarm.
In the past, the production process of the factory mainly relied on traditional hard wiring to control the production process, resulting in low work efficiency due to the need for frequent replacement of transmission lines to meet production needs. Moreover, it is very difficult to collect a large number of types of detection and monitoring data for intelligent manufacturing. In order to improve efficiency, production quality, and reliability, the factory has introduced the industrial Ethernet remote IO module MxxT using barium rhenium technology.
The injection molding machine itself comes with MODBUS industrial control bus data or basic status signal output. The barium rhenium technology remote IO module collects data from the device interface RS232/RS485 port, collects status information of the injection molding machine such as startup, operation, and pause, and uploads it to the injection molding machine controller, or wirelessly uploads it to the cloud server. Based on devices, according to the communication protocols and interfaces of different devices, data is obtained by calling their interface channels, and then transmitted to the server.
The remote IO module is connected to the controller of the injection molding machine, and the operation data of the injection molding machine is uploaded and distributed wirelessly, achieving remote monitoring and intelligent control of the injection molding machine. In addition, the remote I/O module supports perceptual access to peripheral devices such as mold temperature machines, cutting machines, and dryers for injection molding machines, providing users with smart factory services.
During the injection molding process, the industrial Ethernet remote IO module transmits real-time data such as temperature, pressure, and speed to the main controller for monitoring and adjustment, ensuring the stability and compliance of production parameters under different conditions. In the automated assembly process, the industrial Ethernet remote IO module collects data through sensors and other devices, and transmits the relevant data to the main controller for adjustment of relevant actions. For example, the industrial Ethernet remote IO module can monitor the actions of assembly robots, detect the accuracy of product assembly and product quality, and ensure the production quality and stability of the product. At the same time, all production data can also be collected and analyzed remotely, helping enterprise managers better monitor production efficiency and quality.
By introducing industrial Ethernet remote IO modules, this intelligent manufacturing workshop not only improves production efficiency and stability, but also reduces labor and energy costs. Because the industrial Ethernet remote IO module can help enterprises complete the collection and monitoring of production data with one click, as well as avoid unnecessary line replacement and the need for workers to enter and exit the production process, thereby reducing costs and improving production efficiency for enterprises.
In summary, the application of industrial Ethernet remote IO modules in intelligent manufacturing workshops not only improves production efficiency and quality, reduces costs, but also achieves intelligent and digital management of production processes, bringing more opportunities and development space for enterprise development.4000093-510 Safety Instrumented System (SIS)
In addition, this device is widely used for networking and data collection of industrial equipment such as injection molding machines, air compressors, CNC machine tools, on-site PLCs, instruments, sensors, CNC, and electromechanical equipment.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations. In this article, I will focus on digital IO, and in subsequent articles, I will introduce analog IO.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both Di and DO systems, size and heat dissipation issues need to be considered.
Digital input
size
heat
Supports all input types
Type 1, 2, 3, Input
Supports 24 V and 48 V inputs
Robust operating specifications
Wire breakage detection
Digital output
Support for different types of output driver configurations
size
Integrated demagnetization of inductive loads
Heat – When driving multiple outputs
Drive accuracy
diagnosis
For digital input, it is also important to note that it supports different input types, including 1/2/3 type inputs, and in some cases, 24V and 48V inputs. In all cases, reliable operating characteristics are crucial, and sometimes circuit detection is also crucial.
For digital outputs, the system uses different FET configurations to drive the load. The accuracy of the driving current is usually an important consideration. In many cases, diagnosis is also very important.
We will explore how integrated solutions can help address some of these challenges.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used.
Figure 1 shows a typical discrete method for constructing digital input circuits.
Figure 1. Considerations for digital input and output modules.
This type of design is suitable for a certain number of digital inputs; 4 to 8 per board. Beyond this number, this design will soon become impractical. This separation scheme can bring various problems, including:
High power consumption and related board high temperature points.
Each channel requires an optocoupler.
Excessive components can lead to low FIT rate and even require larger devices.
More importantly, the split design method means that the input current increases linearly with the input voltage. Assuming a 2.2K Ω input resistor and 24V V is used. When the input is 1, for example, at 24V, the input current is 11mA, which is equivalent to a power consumption of 264mW. The power consumption of the 8-channel module is greater than 2W, and the power consumption of the 32-bit module is greater than 8W. Refer to Figure 3 below
From a cooling perspective alone, this split design cannot support multiple channels on a single board.
One of the biggest advantages of integrated digital input design is the significant reduction in power consumption, thereby reducing heat dissipation. Most integrated digital input devices allow configurable input current limitations to significantly reduce power consumption.
When the current limiting value is set to 2.6mA, the power consumption is significantly reduced, with each channel approximately 60mW. The rated value of the 8-channel digital input module can now be set below 0.5
Another reason for opposing the use of split logic design is that sometimes DI modules must support different types of inputs. The standard 24V digital input specifications published by IEC are divided into Type 1, Type 2, and Type 3. Type 1 and Type 3 are usually used in combination because their current and threshold limits are very similar. Type 2 has a current limit of 6mA, which is higher. When using the split method, it may be necessary to redesign as most discrete values need to be updated.
However, integrated digital input products typically support all three types. Essentially, Type 1 and Type 3 are generally supported by integrated digital input devices. However, in order to meet the minimum current requirement of 6mA for Type 2 input, we need to use two channels in parallel for one field input. And only adjust the current limiting resistance. This requires a circuit board change, but the change is minimal.
For example, the current maximum integrated (now part of ADI company) DI device has a current limiting value of 3.5mA/channel. So, as shown in the figure, we use two channels in parallel. If the system must be connected to a Type 2 input, adjust the REFDI resistance and RIN resistance. For some newer components, we can also use pins or select current values through software.
To support a 48V digital input signal (not a common requirement), a similar process needs to be used, and an external resistor must be added to adjust the voltage threshold at one end of the field. Set the value of this external resistor so that the current limiting value * R+threshold of the pin meets the voltage threshold specification at one end of the field (see device data manual).
Finally, due to the connection between the digital input module and the sensor, the design must meet the requirements of reliable operating characteristics. When using a split type scheme, these protective functions must be carefully designed. When selecting integrated digital input devices, ensure that the following are determined according to industry standards:
Wide input voltage range (e.g. up to 40V).
Able to use on-site power supply (7V to 65V).
Capable of withstanding high ESD (± 15kV ESD air gap) and surges (usually 1KV).
Providing overvoltage and overheating diagnosis is also very useful for MCU to take appropriate actions.
Design a High Channel Density Digital Output Module
A typical discrete digital output design has a FET with a driving circuit driven by a microcontroller. Different methods can be used to configure FETs to drive microcontrollers.
The definition of a high-end load switch is that it is controlled by an external enable signal and connects or disconnects the power supply from a given load. Compared to low-end load switches, high-end switches provide current to the load, while low-end switches connect or disconnect the grounding connection of the load to obtain current from the load. Although they all use a single FET, the problem with low-end switches is that there may be a short circuit between the load and ground. High end switches protect the load and prevent short circuits to ground. However, the implementation cost of low-end switches is lower. Sometimes, the output driver is also configured as a push-pull switch, requiring two MOSFETs. Refer to Figure 6 below:
Integrated DO devices can integrate multiple DO channels into a single device. Due to the different FET configurations used for high-end, low-end, and push-pull switches, different devices can be used to achieve each type of output driver.
Estimated power consumption of digital input modules constructed using split logic.
Internal demagnetization of inductive loads
One of the key advantages of integrated digital output devices is their built-in inductive load demagnetization function.
Inductive load is any device containing a coil that, after being energized, typically performs some mechanical work, such as solenoid valves, motors, and actuators. The magnetic field caused by current can move the switch contacts in relays or contactors to operate solenoid valves or rotate the motor shaft. In most cases, engineers use high-end switches to control inductive loads, and the challenge is how to discharge the inductance when the switch is turned on and the current no longer flows into the load. The negative effects caused by improper discharge include: possible arcing of relay contacts, significant negative voltage spikes that damage sensitive ICs, and the generation of high-frequency noise or EMI, which can affect system performance.
The most common solution for discharging inductive loads in a split type scheme is to use a freewheeling diode. In this circuit, when the switch is closed, the diode is reverse biased and non-conductive. When the switch is turned on, the negative supply voltage through the inductor will cause the diode to bias forward, thereby attenuating the stored energy by guiding the current through the diode until it reaches a stable state and the current is zero.
For many applications, especially in the industrial industry where each IO card has multiple output channels, the diode is usually of large size, which can lead to a significant increase in cost and design size.
Modern digital output devices use an active clamping circuit to achieve this function within the device. For example, Maxim Integrated adopts a patented SafeDemag ™) Function, allowing digital output devices to safely turn off loads without being limited by inductance.
When selecting digital output devices, multiple important factors need to be considered. The following specifications in the data manual should be carefully considered:
Check the maximum continuous current rating and ensure that multiple outputs can be connected in parallel when needed to obtain higher current drivers.
Ensure that the output device can drive multiple high current channels (beyond the temperature range). Refer to the data manual to ensure that the conduction resistance, power supply current, and thermoelectric resistance values are as low as possible.
The output current driving accuracy specifications are also important.
Estimated power savings for digital input modules using integrated DI chips.
Diagnostic information is crucial for recovering from operating conditions that exceed the range. Firstly, you want to obtain diagnostic information for each output channel. This includes temperature, overcurrent, open circuit, and short circuit. From an overall (chip) perspective, important diagnoses include thermal shutdown, VDD undervoltage, and SPI diagnosis. Search for some or all of these diagnoses in integrated digital output devices.
Programmable digital input/output device
By integrating DI and DO on the IC, configurable products can be built. This is an example of a 4-channel product that can be configured as input or output.
It has a DIO core, which means that a single channel can be configured as DI (Type 1/3 or Type 2) or digital output in high-end or push-pull mode. The current limiting value on DO can be set to 130mA to 1.2A. Built in demagnetization function. To switch between type 1/3 or type 2 digital inputs, we only need to set one pin without using an external resistor.
These devices are not only easy to configure, but also sturdy and durable, and can work in industrial environments. This means high ESD, providing up to 60V power supply voltage protection and line grounding surge protection.
This is an example of a potentially completely different product (configurable DI/DO module) that can be implemented through an integrated approach.
conclusion
When designing high-density digital input or output modules, it is evident that when the channel density exceeds a certain number, the split scheme is meaningless. From the perspectives of heat dissipation, reliability, and size, it is necessary to carefully consider integrated device options. When selecting integrated DI or DO devices, it is important to pay attention to some important data points, including reliable operating characteristics, diagnosis, and support for multiple input-output configurations.
Application of IO Link in Industrial Automation
This article mainly introduces the overall solution of ST IO Link communication master station used in industrial systems, including the following 5 aspects:
Firstly, the application of IO Link in industrial automation; The second is the introduction of ST IO Link main station transceiver; The third is the introduction of our ST”s IO Link main site evaluation board; The fourth is an introduction to the reference design scheme of the IO Link main station; The fifth is a demonstration of the IO Link master station reference design.
The industrial automation system can be said to be composed of many levels. The top level is usually industrial Ethernet to transmit data to the upper control center or monitoring center of the factory, while the middle layer is usually some PLC system for specialized process processing, such as controlling a specialized assembly line or production line. At the bottom, there are usually many industrial sensors, such as temperature sensors, pressure sensors, flow sensors, or proximity sensors, as well as some actuators, such as valves, moving lights, relays, or contactors, which are used for collecting and controlling physical quantities.
Between these levels, there will also be some modules or gateways for conversion and processing work. Therefore, in traditional industrial systems, there are many different level standards and communication protocols on site, resulting in poor modularity and versatility. Because there are both analog signals on site, such as a 4 to 20 mA current loop and analog voltage signals, as well as digital signals. In such an environment, analog signals are particularly susceptible to interference from harsh on-site environments. At the same time, sensors or actuators for analog transmission cannot perform on-site remote configuration or calibration 4000093-510 Safety Instrumented System (SIS) diagnosis work. In order to solve the transmission of the last segment of data to sensors and actuators in industrial field environments, as described earlier, we have introduced a specialized digital interface IO Link to achieve fully digital transmission between the interface modules of sensors and industrial field buses. The bidirectional data transmission makes it possible to parameterize the interaction of on-site data, diagnose and transmit information. By using this technology, remote condition monitoring and predictable maintenance of terminal equipment can be achieved, thereby effectively alleviating the problem of production line downtime.
Its advantages include:4000093-510 Safety Instrumented System (SIS)
Firstly, whether it is a pure digital sensor, an analog sensor after digital quantization, or different types of actuators, unified access can be achieved, thus achieving a simplified and standardized system architecture. Secondly, the transmission of digital signals will have stronger anti-interference ability than the transmission of analog signals, so the reliability of the system will also be stronger. Thirdly, through the bidirectional transmission of digital signals, more intelligent and advanced actuators or sensors can be used, making it easier to achieve status monitoring and system diagnostic protection functions. In this way, any issues and status of the production line can be monitored and maintained in real-time, ensuring the reliability, maintainability, and upgradability of the entire production line, thereby ensuring the minimum downtime.
The following is the specific content about IO Link technology
Firstly, the definition of the IO LINK standard enables data transmission, processing, configuration, and diagnostic information exchange between sensors or actuators and control systems. Secondly, this is a simple peer-to-peer communication architecture, where a master port is connected to a device port. Then, it can achieve compatibility with existing communication architectures, such as reusing cables and interfaces. At the same time, the IO Link system also has backward compatibility upgrade capability, as the master end of the system uses digital binary serial communication to interact with devices, and vice versa.
It can be said that IO link makes the system simpler:
Firstly, this is a universal standard communication method that complies with IEC61131-9. Secondly, IO Link is an intelligent communication system that solves the digital information exchange and transmission of the last distance from the control host to the terminal device. Thirdly, IO Link is simple to use and can be said to be plug and play, compatible with some existing system devices.
Some related products and solutions provided by ST in IO Link communication solutions
Firstly, in this communication system, the IO Link Master, which connects to the upper computer controller, is one of the main key solutions that will be mentioned later. Secondly, ST can provide some communication chips on the IO Link Master project, such as L6360. On the other side of the sensor or actuator end, namely the IO Link Slave end, ST can provide communication chips L6362A and L6364 on this IO Link Slave slave project. According to standards, this three-wire point-to-point communication method is easily compatible with some existing sensor actuators” standard ports, such as M12 standard industrial connectors and M12 standard connector wires. In addition, its advantages include the ability to achieve point-to-point bidirectional signal transmission within a single cable, as well as the general power supply requirements of the master end to the sensor actuator. According to the general requirements of the current industry, the maximum length of this cable is 20 meters, and the three wires inside are 24V, 0V, and data cables. The L+of this chip can support up to 500 milliamperes. If greater current is needed, there are also other L+drivers, including Load Switch IPS and other products, which can provide greater current or can be applied externally. The IO Link communication speed can generally reach a baud rate of 230.4K per COM3, and it also has functions such as status indication and detection.
For some specific application characteristics of IO Link, the communication transceiver system composed of L6360 and L6362A can support three standard data types of IO Link, namely COM1 (4.8k), COM2 (38.4K), and COM3 (230.4K) modes. This communication system can meet the requirements of all modern standards, industrial sensors, and actuators: firstly, it can quickly and very easily configure or reconfigure sensors or actuators. Secondly, it can be widely applied to various standardized sensors or systems that execute information. Thirdly, as a digital communication system, compared to traditional analog signal transmission systems, it can reduce power consumption and improve system efficiency. Fourthly, it has complete diagnostic and protection functions, which can improve the reliability of related systems. Therefore, it can be widely used to drive various digital sensors and actuators, as well as input and output modules of PLC, in order to achieve and meet various requirements of Industry 4.0.
How to Determine the Interference Problem of PROFINET IO Communication
Preliminary Diagnosis of PROFINET Interference Problems
1. Overview
When debugging PROFINET IO communication, it is common to encounter communication failures. One of the reasons for communication failures is interference. PROFINET IO communication equipment often operates in complex industrial electromagnetic environments, and incorrect shielding grounding or non-standard installation may lead to communication interference problems. Since optical signals are not affected by electromagnetic interference, this article only introduces interference problems with electrical signals.
2. How to determine interference issues
If PROFINET IO communication is affected by electromagnetic interference, a simple judgment can generally be made through the following aspects:
2.1. Judging the communication status through PROFINET IO
If the following communication phenomena are found during PROFINET IO communication debugging or operation, it may be affected by electromagnetic interference:
① Occasionally, communication is interrupted and restored.
② When certain on-site devices or specific operations are turned on, communication is interrupted, and on the contrary, communication returns to normal.
2.2. By using STEP7 online diagnostic information to determine and view the diagnostic buffer information of the IO controller, how to detect the presence of frequent communication failures and recovery information between the IO controller and IO devices in the diagnostic buffer, as shown in the following figure, may be affected by electromagnetic interference:
14 STEP7 Device Diagnostic Buffer Information
3. How to troubleshoot and solve interference problems
If a suspected electromagnetic interference causing PROFINET IO communication failure is found, how should we troubleshoot and solve it? The following will be introduced from the following aspects:
3.1 Increase PROFINET IO communication watchdog time
Due to PROFINET IO communication failure occurring during watchdog time, the IO controller did not provide input or output data (IO data) to the IO device, and watchdog time=the number of update cycles allowed for IO data loss × The refresh time is usually automatically calculated and allocated by the IO controller. This time value is generally small. If electromagnetic interference is encountered, the probability of communication failure occurring within the automatically calculated watchdog time will increase. At this time, we can appropriately increase the PROFINET IO communication refresh time or the number of update cycles allowed for IO data loss to increase the watchdog time. However, this method may not solve serious electromagnetic interference problems, and it is recommended to eliminate and solve them through subsequent methods.
How to Build High Channel Density Digital IO Modules for the Next Generation Industrial Automation Controllers
With the rapid development of industrial automation, digital IO modules have become an indispensable part of industrial automation controllers. The digital IO module can connect the controller with external devices, such as sensors, actuators, etc., to achieve monitoring and control of industrial production processes. However, with the continuous development of industrial automation, digital IO modules need to have higher channel density and stronger functionality to meet the needs of new industrial automation controllers. Therefore, it is very important to build high channel density digital IO modules for the next generation of industrial automation controllers.
The digital IO module is one of the most fundamental modules in industrial automation controllers, and its main function is to connect the controller with external devices to achieve signal input and output. The digital IO module usually includes two parts: a digital input module and a digital output module. The digital input module can convert the digital signals of external devices into signals that the controller can read, while the digital output module can convert the digital signals output by the controller into signals that external devices can read. The channel density of a digital IO module refers to the number of digital input or digital output channels provided on the module, which is the input and output capacity of the module.
With the development of industrial automation, digital IO modules need to have higher channel density and stronger functions to meet the needs of new industrial automation controllers. The following are several aspects to consider when building a high channel density digital IO module for the next generation of industrial automation controllers:4000093-510 Safety Instrumented System (SIS)
1. Choose the appropriate communication protocol
Digital IO modules typically communicate with controllers through communication protocols, so choosing a suitable communication protocol is crucial. Common communication protocols include Modbus, Profibus, CANopen, Ethernet, etc. Different communication protocols have different advantages and disadvantages, and selecting a suitable communication protocol requires considering the following factors:
(1) Communication speed: The faster the communication speed, the shorter the response time of the digital IO module, which can process input and output signals faster.
(2) Communication distance: The farther the communication distance, the wider the application range of digital IO modules.
(3) Reliability: The reliability of communication protocols determines the stability and reliability of digital IO modules.
(4) Cost: Different communication protocols have different costs, and suitable communication protocols need to be selected based on actual needs.
2. Choose the appropriate digital IO chip
The digital IO chip is the core component of the digital IO module, and its performance and function directly affect the channel density and function of the digital IO module. Choosing a suitable digital IO chip requires considering the following factors:
(1) Channel density: The channel density of digital IO chips determines the channel density of digital IO modules, and channel density needs to be selected based on actual needs.
(2) Input/output type: Digital IO chips usually support digital input and digital output, and some chips also support functions such as analog input and output, counters, etc.
(3) Speed: The speed of the digital IO chip determines the response speed of the digital IO module, and it is necessary to choose a chip with a faster speed.
(4) Accuracy: The accuracy of digital IO chips determines the signal accuracy of digital IO modules, and it is necessary to choose chips with higher accuracy.
(5) Cost: Different digital IO chips have different costs, and suitable chips need to be selected based on actual needs.
3. Optimize circuit design
The circuit design of digital IO modules has a significant impact on their performance and stability. In order to improve the channel density and functionality of digital IO modules, it is necessary to optimize circuit design, such as:
(1) Using high-speed digital IO chips: Using high-speed digital IO chips can improve the response speed and accuracy of the module.
(2) Adopting anti-interference design: In order to improve the stability of the digital IO module, it is necessary to adopt anti-interference design, such as using filters, isolators, etc.
(3) Using optimized PCB layout: Optimizing PCB layout can reduce noise and interference in digital IO modules, improve module performance and stability.
4. Choose the appropriate shell material and size
Digital IO modules typically need to be installed in cabinets or control cabinets, so choosing the appropriate housing material and size is crucial. The shell material should have good protective and heat dissipation properties to protect the circuits of the digital IO module from external environmental influences. The shell size should be able to adapt to different installation environments, such as cabinets, control cabinets, etc.
5. Optimize software design
The software design of the digital IO module determines its functionality and performance. In order to achieve high channel density and stronger functionality, it is necessary to optimize software design, such as:
(1) Supporting multiple input and output types: Supporting multiple input and output types can meet different application needs, such as digital input and output, analog input and output, counters, etc.
(2) Supporting multiple communication protocols: Supporting multiple communication protocols can adapt to different controllers and application environments.
(3) Support for online debugging and monitoring: Supporting online debugging and monitoring can facilitate user diagnosis and maintenance of modules.
(4) Support for expansion function: Supporting expansion function can increase the functionality and application range of the module while ensuring channel density.
In summary, building a high channel density digital IO module for the next generation of industrial automation controllers requires multiple considerations, including selecting suitable communication protocols, selecting suitable digital IO chips, optimizing circuit design, selecting suitable shell materials and sizes, and optimizing software design. Only by comprehensively considering these factors can a digital IO module with high channel density and stronger functionality be constructed to meet the needs of new industrial automation controllers.
How to assign IO devices to IO controllers?
PROFINET IO system
The PROFINET IO system consists of a PROFINET IO controller and its assigned PROFINET IO devices. After adding IO controllers and IO devices, it is necessary to assign IO controllers to the IO devices to form a basic PROFINET IO system.
Prerequisite requirements
● Already in the network view of STEP 7.
A CPU has been placed (e.g. CPU 1516-3 PN/DP).
● An IO device has been placed (e.g. IM 155-6 PN ST)
Operating Steps (Method 1)
To assign IO devices to IO controllers, follow these steps:
1. Move the mouse pointer over the interface of the IO device.
2. Hold down the left mouse button.
3. Drag the mouse pointer.
The pointer will now use the networking symbol to indicate the “networking” mode. At the same time, you can see a lock character appearing on the pointer
Number. The lock symbol only disappears when the pointer moves to a valid target position.
4. Now, move the pointer to the interface of the desired IO controller and release the left mouse button.
5. Now assign the IO device to the IO controller.
Operating Steps (Method 2)
To assign IO devices to IO controllers, follow these steps:
1. Move the mouse pointer over the word “Unassigned” in the bottom left corner of the IO device icon.
2. Click the left mouse button.
3. Select the IO controller interface to be connected from the available interfaces that appear.
4. Now assign the IO device to the IO controller.
What are the types of integrated IO modules4000093-510 Safety Instrumented System (SIS)
For a programmable logic controller, IO fulfills the responsibilities of data acquisition and instruction output. What control objectives can a PLC achieve, and the quantity and type of IO are crucial. For general integrated PLCs, the number and types of IO interfaces are constant. Some friends may ask, what if you encounter a complex control project with insufficient IO ports in the PLC? Don”t worry, nowadays PLCs have communication interfaces that can be connected to other IO couplers to achieve IO expansion. So, what are the types of IO modules that we can integrate in our daily lives? Actually, it can be mainly divided into four categories, namely:
1. Digital signal acquisition IO can achieve discontinuous signal acquisition, and a typical IO type is a counter input IO module.
Technology Oasis • Source: Guangcheng CAN Bus • Author: Guangcheng CAN Bus • 2022-05-09 09:52 • 1740 readings
For a programmable logic controller, IO fulfills the responsibilities of data acquisition and instruction output. What control objectives can a PLC achieve, and the quantity and type of IO are crucial. For general integrated PLCs, the number and types of IO interfaces are constant. Some friends may ask, what if you encounter a complex control project with insufficient IO ports in the PLC? Don”t worry, nowadays PLCs have communication interfaces that can be connected to other IO couplers to achieve IO expansion. So, what are the types of IO modules that we can integrate in our daily lives? Actually, it can be mainly divided into four categories, namely:
1. Digital signal acquisition IO can achieve discontinuous signal acquisition, and a typical IO type is a counter input IO module.
2. Digital output IO, which can send out command signals of digital quantities to control actuators, such as PWM IO, can send pulse signals to control servo motors and stepper motors. In addition to PWM IO, we often use relay output type IO.
3. After discussing digital IO, let”s talk about analog IO. Firstly, analog input IO includes voltage analog input IO, current analog input IO, temperature analog input IO, etc. They collect continuous signals.
4. Finally, there is the output type IO of analog quantity, mainly including voltage analog quantity output type IO and current analog quantity output type IO. Some friends may ask why there is no temperature this time, but there are relatively few applications, mainly based on voltage and current types.4000093-510 Safety Instrumented System (SIS)
Industrial automation solutions, starting with remote IO modules!
The remote IO module is mainly used for collecting analog and digital signals on industrial sites, and can also output analog and digital signals to control equipment. It is possible to expand the input and output ports of data processing equipment such as PLCs and collection instruments. For example, a PLC only has 10 analog input interfaces, but if 30 analog quantities need to be collected on site, remote IO expansion needs to be added.
Furthermore, due to the distance between the equipment and the main control PLC or industrial computer, RS-485 bus is usually used for transmission. There are also some factories with high levels of automation that use industrial Ethernet to control remote IO modules. In the past, when laying lines between equipment and cabinets, people had to connect them one by one, which greatly increased the cost of cables and construction time. Moreover, if the distance was relatively long, they also faced problems such as voltage attenuation. And with the remote IO module, it effectively solves this problem. If your cabinet is 200 meters away from the site and you do not use remote IO, then you need to lay out each signal line for 200 meters. Installing the remote IO module on site can save you a lot of cable costs and reduce the complexity of construction from a cost perspective.
Simply put, sometimes some IO is set up in the on-site device cluster, which can be connected to the PLC through a communication cable to send the signal to any place where it is needed, saving wiring and PLC”s own IO points. Sometimes, the logical “remote” is because the allowed number of “local IO” cannot meet the actual needs, and it needs to be connected to the “remote IO template”, depending on the actual situation.
In addition, the general cabinet room is located on the device site. But some control signals, such as emergency stop and bypass, are implemented in the control room, so remote IO modules need to be used to send these signals to the control system in the cabinet room.
Why use remote I/O?
1. Because in some industrial applications, it is impossible to install PLCs with local I/O modules near on-site equipment due to harsh environments.
2. When you want to place the I/O module near the field device to eliminate long multi-core cables, you can receive signals from distant sensors and send remote control signals to control valves, motors, and other final actuators. The signal can be transmitted at any distance using various transmission protocols such as Ethernet and Profibus through high-speed media such as twisted pair and fiber optic.
3. Multiple transmission protocols such as Ethernet and Profibus can be used to send signals at any distance on high-speed media such as twisted pair and fiber optic.
The barium rhenium technology MXXT remote IO module uses industrial grade components with a wide working voltage of DC9-36V, which can operate normally within the range of -20~70 ℃. It supports RS485/232 communication mode, and the communication protocol adopts standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. We strive to fully meet the needs of our customers with an electrical and mechanical system that is anti-interference, resistant to harsh environments, and compatible with general use. It has stable performance, reliable quality, short delivery time, and fast response.
Advantages of Barium Rhenium Remote I/O Module
1. It can be controlled by remote commands.
2. Save the cost of using industrial control computers and IO cards, and Ethernet I/O modules can be directly connected to the upper computer system;
3. Replacing 4-20mA signal transmission with 10/100MHz Ethernet transmission has improved transmission speed;
4. Replacing various instrument controller signal lines with an Ethernet cable reduces the attenuation of remote signal transmission;
5. The signal cable of the instrument controller only needs to be connected to the Ethernet I/O module, greatly reducing cable costs and wiring workload.
6. Convenient installation method. Rail installation, high reliability, strong anti-interference ability, and more convenient on-site installation.
What are the advantages of Ethernet remote IO modules that can be cascaded?
Advantages and specific application scenarios of Ethernet remote IO modules that can be cascaded
For scenarios where data collection control points are linearly distributed, such as streetlights, bridges, streetlights, digital factories, parking lot parking monitoring, smart parking lots, smart parking racks, and building automation control systems in smart parks, using cascading dual Ethernet remote IO modules saves more costs than using single Ethernet remote IO modules.
The Ethernet remote IO module that can be cascaded is a new type of Ethernet remote IO module that supports MAC layer data exchange and can achieve hand in hand connection. This not only saves switch interfaces, but also reduces a large amount of Ethernet cable costs, wiring space, and wiring costs.
Its advantages are as follows:4000093-510 Safety Instrumented System (SIS)
1. No need for a large number of Ethernet switches or occupying Ethernet switch ports;
2. It can save a lot of Ethernet cables, cable space, and labor costs for installing cables;
3. The overall cost has significantly decreased;
4. Supports both Modbus RTU protocol, Modbus TCP protocol, and the Internet of Things protocol MQTT protocol;
5. Support TCP Server and TCP Client services;4000093-510 Safety Instrumented System (SIS)
6. Can be connected to SCADA systems, PLC systems, or cloud platforms;
7. The series uses a MAC layer for data exchange, ensuring that network connectivity does not cause communication issues with subsequent devices due to device failures in the middle.
The comparison between cascaded Ethernet remote IO modules and traditional IO modules used in building automation systems is shown in the following figure:
1. Adopting a cascaded dual Ethernet remote IO module, data acquisition and control wiring for floors with a height of 70 meters only requires a 70 meter Ethernet cable;
2. Using a traditional single Ethernet remote IO module, the data acquisition and control system wiring for a 70 meter high floor requires a 280 meter Ethernet cable.
It can be seen that using cascaded dual Ethernet remote IO modules can save a lot of wiring costs compared to traditional single Ethernet remote IO modules.
Application of Ethernet Remote IO Module in Building Automation System
For building automation systems, each data acquisition control point is linearly distributed in each floor. Therefore, it is very suitable to use Ethernet remote IO modules that can be cascaded to achieve data acquisition and control.
The Ethernet remote IO module that can be cascaded supports MAC layer data exchange and can achieve a hand in hand connection method. This can not only save switch interfaces, but also reduce a large amount of Ethernet cable costs, wiring space, and wiring costs.
Its advantages are as follows:
1. No need for a large number of Ethernet switches or occupying Ethernet switch ports;
2. It can save a lot of Ethernet cables, cable space, and labor costs for installing cables;
3. The overall cost has significantly decreased;
4. The M160E supports both Modbus RTU protocol, Modbus TCP protocol, and the Internet of Things protocol MQTT protocol. In addition, it also supports TCP Server and TCP Client services; Can be connected to SCADA systems, PLC systems, or cloud platforms;
4. The M160E series uses a MAC layer for data exchange, ensuring that network connectivity does not cause communication issues with subsequent devices due to device failures in the middle.
Comparison between cascaded Ethernet remote IO modules and traditional IO modules for building automation systems:
1. Adopting a cascaded dual Ethernet remote IO module, data acquisition and control wiring for floors with a height of 70 meters only requires a 70 meter Ethernet cable;
2. Using a traditional single Ethernet remote IO module, the data acquisition and control system wiring for a 70 meter high floor requires a 280 meter Ethernet cable.
Therefore, we can conclude that for scenarios where data collection control points are linearly distributed, such as streetlights, bridges, streetlights, digital factories, parking lot parking monitoring, smart parking lots, smart parking racks, and building automation systems in smart parks, using cascading dual Ethernet remote IO modules saves more costs than using single Ethernet remote IO modules.
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts