Description
PMC/2/11/25/001/00/00/08/00/OK ELAU servo driver/motor
PMC/2/11/25/001/00/00/08/00/OK ELAU servo driver/motor
Module Clips Drive controller servo moto
PMC/2/11/25/001/00/00/08/00/OKA motor is a device that converts electrical energy into mechanical energy. PMC/2/11/25/001/00/00/08/00/OK It utilizes an energized coil (i.e. stator winding) to generate a rotating
magnetic field and act on the rotor (such as a squirrel cage closed aluminum frame) to form a magneto electric rotational torque. Electric motors are divided into DC
motors and AC motors according to the different power sources used. Most of the motors in the power system are AC motors, PMC/2/11/25/001/00/00/08/00/OK which can be synchronous motors or
asynchronous motors (the stator magnetic field speed of the motor does not maintain synchronous speed with the rotor rotation speed). An electric motor is mainly
composed of a stator and a rotor, PMC/2/11/25/001/00/00/08/00/OK and the direction of the force acting on the energized wire in the magnetic field is related to the direction of the current and the direction
of the magnetic induction line (magnetic field direction). PMC/2/11/25/001/00/00/08/00/OK The working principle of an electric motor is that the magnetic field exerts a force on the current, causing the motor to rotate.
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
The mine hoist is an important transportation equipment for mining enterprises. Its main function is to transport the ore, personnel or equipment that need to be transported to the destination by the lifting container. Therefore, it plays a very important role in the mining production process. Usually the mine hoist control system consists of a driving part and a control part. The working mechanism of the driving part is: the motor unit drives the mechanical hoisting device, and the frequency converter or other types of hoisting control systems drive the motor unit: the working mechanism of the control part is: Each component of the hoist is coordinated and controlled by the Distributed Control System (DCS). In addition to completing basic process control, it can also integrate intelligent instruments, intelligent transmission and motor control, and even production management and safety systems into one operation and engineering environment. middle. Therefore, the mine hoist requires a control system with high performance, high reliability, and high integration.
1ABB800xA system and AC800M controller introduction
1.1ABB800xA system introduction
The 800xA system is an industrial information control system launched by ABB. The core of its architecture is object-oriented (ObjectOriented) technology. Due to the adoption of ABB’s unique Aspect0object concept, enterprise-level information access, object navigation and access can become standardized and simple.
In order to provide a unified information platform for enterprise managers and technical personnel, the 800xA system provides a base platform (BasePlatform), which relatively separates the process control part and production control management and organically combines them together. As shown in Figure 1, the middle part is the basic platform, the upper part is the production control management part, and the lower part is the process control part. The basic platform provides standard interfaces for these two parts for data exchange.
1.2 Introduction to ABBAC800M controller and its programming configuration tools
AC800M controller is ABB’s latest controller series, which includes a series of processors from PM851 to PM865. The AC800M controller itself has a pair of redundant TCP/IP interfaces. It can use the MMs protocol to communicate with other control devices and 800xA operator stations through Ethernet. It can also use the Modbus protocol and Point-Point protocol through 2 serial ports. communication. The programming and configuration tool of AC800M is ControlBuilderM, referred to as CBM. It supports standard ladder diagram, function block language, text description language and assembly language to write control logic.
2. Improve the design and implementation of control system functions
2.1 Implementation of elevator operating speed curve
One of the main tasks of the lifting control system is to control the lifting motor to operate according to the speed-position curve given by the design, so that the lifting container passes through the acceleration section, the uniform speed section and the deceleration section successively, and stops accurately after completing the specified lifting distance. somewhere in the wellbore. In order to realize the function of precise position calculation, the designed elevator control system must be able to perform high-precision position calculation based on the photoelectric encoder connected to the main shaft of the elevator drum. The calculation formula is as follows:
In the formula, s is the actual position value of the elevator: sp is the distance corresponding to two consecutive encoder pulses: AN is the difference between the encoder count value at the reference position and the current position (signed variable): s0 is the reference position value.
The encoder counts are distributed according to the circumference of the drum. After the number of pulses Np generated by the encoder rotation is known, the diameter of the circumference of the centerline of the wire rope wrapped around the drum must be accurately known, so that it can be calculated according to formula (2) The distance sp corresponding to the two encoder pulses:
In the formula, D is the circumferential diameter of the centerline of the wire rope: Np is the number of pulses for one revolution of the known encoder.
But in formula (2), there is a value D that keeps getting smaller as the system runs. This is because the wire rope used in the elevator is wrapped around the drum, and there is a lining between the wire rope and the drum that increases friction. This liner will become thinner and thinner as the system continues to wear and tear, causing the diameter of the circle formed by the center line of the steel wire rope to gradually become smaller. When the pad wears to a certain extent, it will cause a large position calculation error. In order to solve the above problems, the two parking position switches in the shaft are used to correct the drum diameter, because the distance between the two parking positions can be obtained through actual measurement with high accuracy. During the actual operation, record the encoder count values at the two parking positions respectively. According to formula (3), the actual correction value of sp can be calculated:
In the formula, sd is the distance between two parking positions: Abs is the absolute value operation: N is the encoder count value when there are two parking positions.
In this way, the initial sp value is first set according to the given design parameter value, and then the value is corrected according to the actual operating conditions, which can effectively ensure the accuracy of position calculation. At the same time, sp’ can also be substituted into formula (2), and the D value can be obtained in turn, which can be used as a basis for judging whether the liner is seriously worn.
After obtaining the elevator position value, the speed control curve can be calculated according to formula (4):
330854-040-25-CN 3300 XL 25mm extension cable
9905-020 Control device
330850-50-00 Short range sensor
TC514V2 3BSE013281R1 AF100 Twisted Pair/Optical modem
330851-02-000-040-10-01-CN 3300 XL 11mm short-range probe
UNS0017A-P VAR.1 HIEE305106R0001 Jumper trigger board
9200-01-02-10-00 dual-line speed seismic detection sensor
UNS0881A-PV2 7.5KV 3BHE033982R0010 Door Drive interface board
330704-000-040-10-02-00 Bentley probe
DSTYW121 voltage transformer unit 3BSE007836R1
SA168 3BSE003389R1 Power unit
SA167 3BSE003390R1 Power unit
TC630 3BSE002253R1 AF100 optical modem
SB511 3BSE002348R1 Standby power supply
TC625 3BSE002224R1 AF100 coaxial modem
CI570K01 3BSE003565R1 MasterFieldbus Controller
CI532V01 3BSE003826R1 Indicates the RCOM interface of the submodule
DSTD190 3BSE004723R1 Connection unit
CI531 3BSE003825R1 RS232 ports on the submodule
SB511K01 3BSE004451R1 Battery Charger Kit
DSTD195 3BSE004724R1 Connection unit
DSTD198 3BSE004727R1 Connects to Channel 8 of unit
SB510K01 3BSE004450R1 Battery Charger Kit
DSTD197 3BSE004726R1 Connects to channel 8 of unit
CI543 3BSE010699R1 GCOM communication port
CI534V04 3BSE010702R1 submodule
TC516 3BSE012632R1 Twisted Pair modem
TRICONEX 2481 Output module base board TRICON AO2481
TRICONEX 2058 INVENSY 2058 Input/Output module
TRICONEX 2652 Output module
TRICONEX 2101 I/O module TRICONEX 2351
TRICONEX 2700 Analog output module System communication card TRICON 2700
TRICONEX 2755 Output module Digital component TRICON 2755
TRICONEX 3002 Pulse input terminal board TRICON 3002
TRICONEX 3003 Processor Module V7 EMPII TRICON 3003
TRICONEX 3005 Pulse input terminal board TRICON 3005
1C31219G01 Relay Output Module
TRICONEX 3006 Main processor module TRICON 3006
TRICONEX 3008 Main processor TRICON 3008
TRICONEX 3009 Enhanced Main Processor (UMP) module TRICON 3009
TRICONEX 3101 Main processor module TRICON 3101
TRICONEX 3201 Communication module TRICON 3201
TRICONEX 3381 Digital input module TRICON 3381
TRICONEX 3351 simulates the input module TRICON 3351
1769-L30ERM CompactLogix 5370 controller XIONGBA PLC
TRICONEX 3451 Relay Output module TRICON 3451
TRICONEX 3481 Analog Output module TRICON AO3481
TRICONEX 3510 Pulse input module TRICON 3510
TRICONEX 3511 Pulse input module TRICON 3511
TRICONEX 3515 Pulse input module TRICON 3515
TRICONEX 3564 Digital input module TRICON 3564
TRICONEX 3625 Digital 24VDC Output Module TRICON 3625
TRICONEX 3674 Digital Input/Output Module TRICON 3674
TRICONEX 3701 Analog input/output module TRICON 3701
TRICONEX 3700 Digital 24VDC Output Module TRICON 3700A Technical specification
TRICONEX 3721 Analog input module TRICON 3721
TRICONEX 3720 Digital Output Module TRICON 3720
TRICONEX 3807 Bipolar analog Output module TRICON 3807
TRICONEX 4118 Module EICM V8 isolates TRICON 4118
TRICONEX 4101 Processor module EICM TRICON ICM4101
TRICONEX 4201 Remote Module RXM TRICON 4201
TRICONEX 4211 Remote Module TRICON 4211
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts