Description
SB145/20/22/05/24/P/01/64/COKN Motor installation instructions
SB145/20/22/05/24/P/01/64/COKN Motor installation instructions
Module Clips Drive controller servo moto
SB145/20/22/05/24/P/01/64/COKN Motor is a device that converts electrical energy into mechanical energy.
It uses energized coils (i.e. stator windings) to generate a rotating magnetic field and applies it to the rotor (such as a squirrel cage closed aluminum frame) to form a magnetic electric rotational torque.
SB145/20/22/05/24/P/01/64/COKN Electric motors are divided into DC motors and AC motors according to their power sources. Most electric motors in the power system are AC motors,
which can be synchronous motors or asynchronous motors (the stator magnetic field speed and rotor rotation speed of the motor do not maintain synchronous speed).
The SB145/20/22/05/24/P/01/64/COKN electric motor is mainly composed of a stator and a rotor. The direction of force movement of the energized wires in the magnetic field is related to the direction
of the current and the direction of the magnetic field lines (magnetic field direction). The working principle of an electric motor is that the magnetic field exerts force on the current, causing the motor to rotate.
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
The mine hoist is an important transportation equipment for mining enterprises. Its main function is to transport the ore, personnel or equipment that need to be transported to the destination by the lifting container. Therefore, it plays a very important role in the mining production process. Usually the mine hoist control system consists of a driving part and a control part. The working mechanism of the driving part is: the motor unit drives the mechanical hoisting device, and the frequency converter or other types of hoisting control systems drive the motor unit: the working mechanism of the control part is: Each component of the hoist is coordinated and controlled by the Distributed Control System (DCS). In addition to completing basic process control, it can also integrate intelligent instruments, intelligent transmission and motor control, and even production management and safety systems into one operation and engineering environment. middle. Therefore, the mine hoist requires a control system with high performance, high reliability, and high integration.
1ABB800xA system and AC800M controller introduction
1.1ABB800xA system introduction
The 800xA system is an industrial information control system launched by ABB. The core of its architecture is object-oriented (ObjectOriented) technology. Due to the adoption of ABB’s unique Aspect0object concept, enterprise-level information access, object navigation and access can become standardized and simple.
In order to provide a unified information platform for enterprise managers and technical personnel, the 800xA system provides a base platform (BasePlatform), which relatively separates the process control part and production control management and organically combines them together. As shown in Figure 1, the middle part is the basic platform, the upper part is the production control management part, and the lower part is the process control part. The basic platform provides standard interfaces for these two parts for data exchange.
1.2 Introduction to ABBAC800M controller and its programming configuration tools
AC800M controller is ABB’s latest controller series, which includes a series of processors from PM851 to PM865. The AC800M controller itself has a pair of redundant TCP/IP interfaces. It can use the MMs protocol to communicate with other control devices and 800xA operator stations through Ethernet. It can also use the Modbus protocol and Point-Point protocol through 2 serial ports. communication. The programming and configuration tool of AC800M is ControlBuilderM, referred to as CBM. It supports standard ladder diagram, function block language, text description language and assembly language to write control logic.
2. Improve the design and implementation of control system functions
2.1 Implementation of elevator operating speed curve
One of the main tasks of the lifting control system is to control the lifting motor to operate according to the speed-position curve given by the design, so that the lifting container passes through the acceleration section, the uniform speed section and the deceleration section successively, and stops accurately after completing the specified lifting distance. somewhere in the wellbore. In order to realize the function of precise position calculation, the designed elevator control system must be able to perform high-precision position calculation based on the photoelectric encoder connected to the main shaft of the elevator drum. The calculation formula is as follows:
In the formula, s is the actual position value of the elevator: sp is the distance corresponding to two consecutive encoder pulses: AN is the difference between the encoder count value at the reference position and the current position (signed variable): s0 is the reference position value.
The encoder counts are distributed according to the circumference of the drum. After the number of pulses Np generated by the encoder rotation is known, the diameter of the circumference of the centerline of the wire rope wrapped around the drum must be accurately known, so that it can be calculated according to formula (2) The distance sp corresponding to the two encoder pulses:
In the formula, D is the circumferential diameter of the centerline of the wire rope: Np is the number of pulses for one revolution of the known encoder.
But in formula (2), there is a value D that keeps getting smaller as the system runs. This is because the wire rope used in the elevator is wrapped around the drum, and there is a lining between the wire rope and the drum that increases friction. This liner will become thinner and thinner as the system continues to wear and tear, causing the diameter of the circle formed by the center line of the steel wire rope to gradually become smaller. When the pad wears to a certain extent, it will cause a large position calculation error. In order to solve the above problems, the two parking position switches in the shaft are used to correct the drum diameter, because the distance between the two parking positions can be obtained through actual measurement with high accuracy. During the actual operation, record the encoder count values at the two parking positions respectively. According to formula (3), the actual correction value of sp can be calculated:
In the formula, sd is the distance between two parking positions: Abs is the absolute value operation: N is the encoder count value when there are two parking positions.
In this way, the initial sp value is first set according to the given design parameter value, and then the value is corrected according to the actual operating conditions, which can effectively ensure the accuracy of position calculation. At the same time, sp’ can also be substituted into formula (2), and the D value can be obtained in turn, which can be used as a basis for judging whether the liner is seriously worn.
After obtaining the elevator position value, the speed control curve can be calculated according to formula (4):
AAI141-h00/K4A00 AAI141 Analog input module
330103-00-04-10-02-05 3300 XL 8mm short range probe
2093-AC05-MP5 Integrated shaft module
2198-D012-ERS3 dual-axis inverter
1756-OF8A analog output module
1756-IF8A Analog input module
FSCA-01 RS-485 Adapter module
701PGNKF Intelligent power module
1606-XLB240E Power module
IC693BEM330 FIP remote I/O scanner
F3YD64-1P YOKOGAWA Transistor output module
F3YD32-1P YOKOGAWA Transistor output module
F3YP12-0V YOKOGAWA Transistor output module
1734-CTM Input/output common terminal module
20P41AD330RA0NNN Three-phase AC driver
1769-SDN DeviceNet Communication module
2080-LC50-24AWB Programmable Logic controller
2080-LC50-24QBB Compact controller
20F1ANC205JN0NNNNN Adjustable frequency AC driver
25A-D043N114 PowerFlex 523 Series compact low voltage driver
22C-D038A103 AC Powerflex 400 drive
BCU-12 Control unit BCU12
FEN-31 68978955 HTL encoder interface
1769-OF4 Analog output module
MPS022 13100-203 Power module
1784-PKTX/A Network interface card
1FK2104-5AF11-1MA0 servo motor
3G3MX2-A4040-ZV1 multifunctional mini frequency converter
2711-K6C5 PanelView Standard Operator Terminal
1769-IF16C Compact I/O mode
Drive ACS880-01-109A-3 ABB
5069-L320ERS2 compact GuardLogix controller
1783-US16T Ethernet unmanaged switch
1783-BMS10CGL Managed Ethernet switch
2198-D020-ERS3 Kinetix 5700 two-axis servo drive
5069-OBV8S Security output module
AL81G ACQUISITIONLOGIC single-channel Analog input board
05701-A-0281 Single channel control card 05701-A-0281
CG6565/64-2L/8TE NMS Media processing board
D0C-16C SAMSUNG Digital Output and counting board
05701-B-0376 HONEYWELL control card module
05701-A-0303 HONEYWELL control card module
1756-OW16I ControlLogix discrete output module
1756-IRT8I ControlLogix Analog input module
1756-EN2TP Allen-Bradley Communication module
1756-OF8H Allen-Bradley analog output module
1756-IF16H Allen-Bradley analog input module
REF615 HBFDACADABC1BNN21G feeder protection and measurement and control device
Pxi-2510 NI PXI signals are inserted into the switch module
AKM34H-ANC2R-00 KOLLMORGEN brushless servo motor
AKM230-ANCNR-00 KOLLMORGEN servo motor
AKM32H-ANC2R-00 KOLLMORGEN servo motor
MPL-B680H-MJ74AA low inertia servo motor
3500/15-02-02-00 Power module
1794-IB32 Flex I/O DC input module
CX5130-0125 Embedded computer processor
MHD115C-035-PG0-AA MHD synchronous motor
PCIe-6734 NI Multifunctional I/ O device
140ERT85410 Multifunctional input module
SPM-D2-101010B/YB 8440-2167 Synchronizer
8800-1001 WOODWARD digital speed switch
REF611 HCBACB2AA1XE feeder protection and measurement and control device
MPL-B430P-HJ74AA servo motor
1756-PB72 A-B ControlLogix Power Supply
1734-AENTR I/O Dual Ethernet communication module
1769-L24ER-QB1B CompactLogix Encapsulates the controller
TZIDC-V18345-1010521001 Electropneumatic positioner
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts