Sale!

2835015 TRICONEX nput/output communication card

¥666.00

2835015 TRICONEX nput/output communication card
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

2835015 TRICONEX nput/output communication card
2835015 TRICONEX nput/output communication card
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
What are the types of integrated IO modules2835015 TRICONEX nput/output communication card
For a programmable logic controller, IO fulfills the responsibilities of data acquisition and instruction output. What control objectives can a PLC achieve, and the quantity and type of IO are crucial. For general integrated PLCs, the number and types of IO interfaces are constant. Some friends may ask, what if you encounter a complex control project with insufficient IO ports in the PLC? Don”t worry, nowadays PLCs have communication interfaces that can be connected to other IO couplers to achieve IO expansion. So, what are the types of IO modules that we can integrate in our daily lives? Actually, it can be mainly divided into four categories, namely:
1. Digital signal acquisition IO can achieve discontinuous signal acquisition, and a typical IO type is a counter input IO module.
Technology Oasis • Source: Guangcheng CAN Bus • Author: Guangcheng CAN Bus • 2022-05-09 09:52 • 1740 readings
For a programmable logic controller, IO fulfills the responsibilities of data acquisition and instruction output. What control objectives can a PLC achieve, and the quantity and type of IO are crucial. For general integrated PLCs, the number and types of IO interfaces are constant. Some friends may ask, what if you encounter a complex control project with insufficient IO ports in the PLC? Don”t worry, nowadays PLCs have communication interfaces that can be connected to other IO couplers to achieve IO expansion. So, what are the types of IO modules that we can integrate in our daily lives? Actually, it can be mainly divided into four categories, namely:
1. Digital signal acquisition IO can achieve discontinuous signal acquisition, and a typical IO type is a counter input IO module.
2. Digital output IO, which can send out command signals of digital quantities to control actuators, such as PWM IO, can send pulse signals to control servo motors and stepper motors. In addition to PWM IO, we often use relay output type IO.
3. After discussing digital IO, let”s talk about analog IO. Firstly, analog input IO includes voltage analog input IO, current analog input IO, temperature analog input IO, etc. They collect continuous signals.
4. Finally, there is the output type IO of analog quantity, mainly including voltage analog quantity output type IO and current analog quantity output type IO. Some friends may ask why there is no temperature this time, but there are relatively few applications, mainly based on voltage and current types.2835015 TRICONEX nput/output communication card
Industrial automation solutions, starting with remote IO modules!
The remote IO module is mainly used for collecting analog and digital signals on industrial sites, and can also output analog and digital signals to control equipment. It is possible to expand the input and output ports of data processing equipment such as PLCs and collection instruments. For example, a PLC only has 10 analog input interfaces, but if 30 analog quantities need to be collected on site, remote IO expansion needs to be added.
Furthermore, due to the distance between the equipment and the main control PLC or industrial computer, RS-485 bus is usually used for transmission. There are also some factories with high levels of automation that use industrial Ethernet to control remote IO modules. In the past, when laying lines between equipment and cabinets, people had to connect them one by one, which greatly increased the cost of cables and construction time. Moreover, if the distance was relatively long, they also faced problems such as voltage attenuation. And with the remote IO module, it effectively solves this problem. If your cabinet is 200 meters away from the site and you do not use remote IO, then you need to lay out each signal line for 200 meters. Installing the remote IO module on site can save you a lot of cable costs and reduce the complexity of construction from a cost perspective.
Simply put, sometimes some IO is set up in the on-site device cluster, which can be connected to the PLC through a communication cable to send the signal to any place where it is needed, saving wiring and PLC”s own IO points. Sometimes, the logical “remote” is because the allowed number of “local IO” cannot meet the actual needs, and it needs to be connected to the “remote IO template”, depending on the actual situation.
In addition, the general cabinet room is located on the device site. But some control signals, such as emergency stop and bypass, are implemented in the control room, so remote IO modules need to be used to send these signals to the control system in the cabinet room.
Why use remote I/O?
1. Because in some industrial applications, it is impossible to install PLCs with local I/O modules near on-site equipment due to harsh environments.
2. When you want to place the I/O module near the field device to eliminate long multi-core cables, you can receive signals from distant sensors and send remote control signals to control valves, motors, and other final actuators. The signal can be transmitted at any distance using various transmission protocols such as Ethernet and Profibus through high-speed media such as twisted pair and fiber optic.
3. Multiple transmission protocols such as Ethernet and Profibus can be used to send signals at any distance on high-speed media such as twisted pair and fiber optic.
The barium rhenium technology MXXT remote IO module uses industrial grade components with a wide working voltage of DC9-36V, which can operate normally within the range of -20~70 ℃. It supports RS485/232 communication mode, and the communication protocol adopts standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. We strive to fully meet the needs of our customers with an electrical and mechanical system that is anti-interference, resistant to harsh environments, and compatible with general use. It has stable performance, reliable quality, short delivery time, and fast response.
Advantages of Barium Rhenium Remote I/O Module
1. It can be controlled by remote commands.
2. Save the cost of using industrial control computers and IO cards, and Ethernet I/O modules can be directly connected to the upper computer system;
3. Replacing 4-20mA signal transmission with 10/100MHz Ethernet transmission has improved transmission speed;
4. Replacing various instrument controller signal lines with an Ethernet cable reduces the attenuation of remote signal transmission;
5. The signal cable of the instrument controller only needs to be connected to the Ethernet I/O module, greatly reducing cable costs and wiring workload.
6. Convenient installation method. Rail installation, high reliability, strong anti-interference ability, and more convenient on-site installation.
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
Barium rhenium technology remote IO modules are widely used in IoT scenarios such as intelligent transportation, smart water conservancy, smart agriculture, smart campuses, smart communities, smart power distribution, and smart water conservancy.
With the development of IIOT industrial Internet of Things technology, more and more traditional assets need to be connected to the internet, achieving unified data collection and analysis, and breaking the phenomenon of traditional device information silos. The barium rhenium technology remote IO module M160T, which supports IoT protocols, has become an excellent choice for many enterprises to achieve device networking, remote control, and data collection based on the compatibility of existing devices and the accessibility of IoT platforms!
Ethernet communication technology is a mature communication technology because it has the characteristics of stability, reliability, mature technology, fast transmission speed, and fast construction wiring. Due to its wide application, Ethernet communication through the MQTT protocol is the main way for enterprise equipment to go to the cloud. Barium rhenium technology can quickly collect data and control such as air compressor room, property living pump room, street light control, liquid level collection, temperature and humidity collection through Ethernet remote IO module.2835015 TRICONEX nput/output communication card
So, why is the remote IO module of barium rhenium technology widely used in the field of industrial IoT? The specific reasons are as follows.
1. Actively connect to cloud platforms:
Based on the characteristics of Ethernet communication networks, the barium rhenium technology remote IO module does not require complex settings such as peanut shells to achieve the Internet of Things. The barium rhenium technology remote IO module needs to support both TCP client and TCP server functions.
2. Compatibility with existing systems:
It supports TCP Server and Modbus TCP protocol functions, and is compatible with device access of traditional upper level systems or HMI TCP clients.
3. Support multiple IoT platforms:
Supports standard MQTT, Modbus TCP, and Modbus RTU over TCP protocols. It can be connected to public cloud IoT platforms and user built MQTT private clouds through the MQTT protocol. It can also be connected to SCADA and DCS systems through Modbus TCP.
4. Rich IO interfaces and scalability:
There are many types of IO for industrial field data collection and replication. The Ethernet IO module of barium rhenium technology supports signal acquisition from various devices such as 4-20Ma, 0-20mA, 0-5V, 0-10V, RS485, DI, DO, PT100, PT1000, pulse input, pulse output, etc. At the same time, it expands the instrument data reading ability of RS485 devices.
5. Convenient installation method:
The volume of industrial on-site control boxes is often very limited, and the barium rhenium technology Ethernet IO module adopts a direct plug-in connection terminal and rail installation method. The compact volume greatly saves space in the control box!
6. Industrial grade design
The industrial environment is harsh, and the remote IO module using barium rhenium technology needs to adopt an industrial grade design, which can work continuously and stably in harsh environments.
Through the use of barium rhenium technology remote IO modules, there is no need to replace existing various enterprise assets, and the digital transition to the Internet of Things platform can be quickly achieved. Therefore, barium rhenium technology remote IO modules are widely used in industrial IoT, such as intelligent real estate, intelligent campus, intelligent factory, intelligent transportation, intelligent water conservancy, intelligent agriculture, intelligent campus, intelligent community, intelligent transportation, and many other industries.
What is the role of distributed IO modules and what are their main applications in
The distributed IO module transmits status signals from the measurement and control field to various measurement and control fields for control. It is mainly used in the industrial field and can also be used for detection of equipment such as air conditioners and motors.
In distributed systems, there are important business data closely related to system operation, as well as data related to nodes, application services, and data services, which are crucial for the normal operation of clusters.
IO on general PLCs is usually closely followed by CPU units, but in order to facilitate connection and maintenance, the concept of distributed IO has been proposed in the industrial field. That is to say, the IO unit can be arranged far away from the PLC CPU unit and communicate through the network communication protocol of the device layer.
The distributed IO module is developed for detecting and implementing remote control of various types of standard analog and switch signals (frequency, pulse, or switch state signals) in the field of measurement and control. The series of modules can digitize the test signal front-end and transmit it to the host through optical fiber; Or transmit the control instructions sent by the host to the controlled device to achieve remote control. Especially suitable for state detection and control of complex electromagnetic environments in power, industrial control, on-site switchgear, and large power equipment.
The role of distributed IO modules:
1. Support 4-way switch digital quantity
2. Supports 8 analog inputs
3. 4 relay outputs, 1 RS485 serial port data acquisition to Ethernet
4. 485 to Ethernet serial server
5. Supports Modbus to TCP/UDP protocol conversion
6. Supports virtual serial ports and interfaces with various configuration software
7. Support 0-5V, 0-10V, 0-30V range acquisition
8. Supports 0-20ma and 4-20ma range acquisition
What is the function of an IO chip
Io generally refers to input and output devices, where I is the input and O is the output. The input to the IO port of the chip is the external signal transmission to the chip, while the output is the internal signal transmission to other devices. The input and output are relative. In short, in a broad sense, the control of input and output interfaces is called an IO chip, and network cards are also considered IO or array cards.
The CPU must read and write data to external registers or ROMs on RAM or other hardware through IO commands (such as input/output commands). For example, reading a keyboard involves accessing external registers on the keyboard through the 60H port, and the chip on the keyboard scans the keyboard. Pressing or holding down a key for a long time will cause the chip to generate corresponding scan or break codes, which will be written to the external register of the 60H port, so that the CPU can achieve the purpose of controlling the keyboard. Therefore, I think IO chips should refer to a large category. The CPU already has powerful IO instructions and corresponding control buses.
51 microcontroller IO port input and output mode_ Four usage methods for IO ports
The traditional 51 microcontroller IO interface can only be used as a standard bidirectional IO interface. If it is used to drive LED, it can only be driven by injecting current or using a transistor external expansion drive circuit.
Current injection method: LED positive pole connected to VCC, negative pole connected to IO port. If the IO is at a high level, the two poles of the LED are at the same level, and there is no current, the LED will turn off; IO is at low power level, current flows from VCC to IO, and LED lights up. But when you connect the positive pole of the LED to the IO interface and the negative pole to GND, placing the IO interface at a high level will cause the LED to light up. However, due to the insufficient pull-up capability of the IO interface, the brightness is not ideal. The following method can be used to solve this problem.
Push-pull working mode: The positive and negative poles of the LED are connected to two IO ports, and then the positive IO interface is set as the push-pull output, while the negative IO interface is set as the standard bidirectional current input. The push pull method has strong pull-up ability and can achieve high-level LED driving.
Four usage methods for IO ports2835015 TRICONEX nput/output communication card
From the perspective of the characteristics of the I/O port, the P0 port of Standard 51 is an open drain structure when used as an I/O port, and in practical applications, a pull-up resistor is usually added; P1, P2, and P3 are all quasi bidirectional I/Os with internal pull-up resistors, which can be used as both input and output. The I/O port characteristics of the LPC900 series microcontroller have certain differences, and they can be configured into four different working modes: quasi bidirectional I/O, push pull output, high resistance input, and open drain.
Compared with Standard 51, the quasi bidirectional I/O mode differs in internal structure but is similar in usage. For example, when used as an input, it must first write “1” to set it to high level before reading the level state of the pin.!!!!! Why is it like this? Please refer to the diagram below for analysis.
The characteristic of push-2835015 TRICONEX nput/output communication cardpull output is that it can drive a large current regardless of whether it outputs high or low levels. For example, when outputting high levels, it can directly light up the LED (by connecting several hundred ohm current limiting resistors in series), which is difficult to achieve in quasi bidirectional I/O mode.
The characteristic of high impedance input mode is that it can only be used as an input, but it can obtain relatively high input impedance, which is necessary in analog comparator and ADC applications.
The open drain mode is similar to the quasi bidirectional mode, but there is no internal pull-up resistance. The advantage of open drain mode is good electrical compatibility. If the external pull-up resistor is connected to a 3V power supply, it can interface with a 3V logic device. If the pull-up resistor is connected to a 5V power supply, it can also interface with a 5V logic device. In addition, the open drain mode can also conveniently implement the “line and” logic function.
For the explanation of the above question, there is this information:
High resistance state is a common term in digital circuits, referring to an output state of a circuit that is neither high nor low. If the high resistance state is input into the next level circuit, it has no impact on the lower level circuit, just like not connected. If measured with a multimeter, it may be high or low, depending on what is connected afterwards.
High resistance states can be understood as open circuits during circuit analysis. You can think of it as having a very high output (input) resistance. His limit can be considered suspended.
Typical applications of high resistance states:
1. On the bus connected structure. There are multiple devices hanging on the bus, and the devices are connected to the bus in a high impedance form. This automatically releases the bus when the device does not occupy it, making it easier for other devices to gain access to the bus.
2. Most microcontroller I/O can be set to high impedance input when used, such as Lingyang, AVR, and so on. High resistance input can be considered as having infinite input resistance, indicating that I/O has minimal impact on the preceding stage and does not generate current (without attenuation), and to some extent, it also increases the chip”s resistance to voltage surges.
What is the difference between remote IO and distributed IO
People often discuss the difference between remote IO and distributed IO. However, some people believe that they are the same and terms can be exchanged, while others believe the opposite. What is the difference between remote I/O and distributed I/O? The following is a guide from remote IO manufacturer Zhongshan Technology to understand the difference between remote IO and distributed IO.
Remote and distributed within the location range.2835015 TRICONEX nput/output communication card
Today”s DCS is a control system with many distributed autonomous controllers, each with many continuous operations. This controller is bundled together by a central monitoring controller. We have used the terms remote and distributed in the locations of I/O and controllers. It is easy to see how these terms are misunderstood.
From the perspective of PLC, remote I/O represents the actual distance that the I/O module is away from the control PLC. Distributed I/O is very intelligent, as mentioned earlier, remote I/O is sometimes referred to as distributed I/O. Let”s take a look at the definition of distributed I/O. This definition is different from remote I/O.
Generally speaking, distributed I/O has a brain or some computing power. By default, it is remote. As mentioned earlier, remote I/O is located physically far from the control PLC. Remote I/O has no brain and cannot perform any computational functions at all. It can be said with certainty that when you hear the term remote I/O, it only involves one controller or PLC, while distributed I/O has multiple controllers.
ZSR-Ethernet-2184 is a distributed Ethernet RTU that supports 4-way switch digital input (Di), 8-way analog input (Ai), 4-way relay (Do) output, 1-way RS485 serial port data acquisition to Ethernet, and Modbus RTU terminal. Merge 485 to Ethernet serial port server function, support Modbus to TCP/UDP protocol conversion, support virtual serial port, and interface with various configuration software. Supports signal acquisition in the range of 0-5V, 0-10V, 0-30V, or 0-20ma, 4-20ma, with built-in software and hardware watchdog, industrial grade components, and stable operation in an industrial environment of -40~85 ° C.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.2835015 TRICONEX nput/output communication card
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both DI and DO systems, size and heat dissipation issues need to be considered.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used
For example, the current limiting value of DI devices in ADI is 3.5mA/channel. So, as shown in the figure, we use two channels in parallel. If the system must be connected to a Type 2 input, adjust the REFDI resistance and RIN resistance. For some newer components, we can also use pins or select current values through software.
To support a 48V digital input signal (not a common requirement), a similar process needs to be used, and an external resistor must be added to adjust the voltage threshold at one end of the field. Set the value of this external resistor so that the current limiting value * R+threshold of the pin meets the voltage threshold specification at one end of the field (see device data manual).
Finally, due to the connection between the digital input module and the sensor, the design must meet the requirements of reliable operating characteristics. When using a split type scheme, these protective functions must be carefully designed. When selecting integrated digital input devices, ensure that the following are determined according to industry standards:
Wide input voltage range (e.g. up to 40V).
Able to use on-site power supply (7V to 65V).
Capable of withstanding high ESD (± 15kV ESD air gap) and surges (usually 1KV).
Providing overvoltage and overheating diagnosis is also very useful for MCU to take appropriate actions.
Design a High Channel Density Digital Output Module
A typical discrete digital output design has a FET with a driving circuit driven by a microcontroller. Different methods can be used to configure FETs to drive microcontrollers.
The definition of a high-end load switch is that it is controlled by an external enable signal and connects or disconnects the power supply from a given load. Compared to low-end load switches, high-end switches provide current to the load, while low-end switches connect or disconnect the grounding connection of the load to obtain current from the load. Although they all use a single FET, the problem with low-end switches is that there may be a short circuit between the load and ground. High end switches protect the load and prevent short circuits to ground. However, the implementation cost of low-end switches is lower. Sometimes, the output driver is also configured as a push-pull switch, requiring two MOSFETs. Refer to Figure 4 below.
Integrated DO devices can integrate multiple DO channels into a single device. Due to the different FET configurations used for high-end, low-end, and push-pull switches, different devices can be used to achieve each type of output driver.
Application of IO Link in Industrial Automation
This article mainly introduces the overall solution of ST IO Link communication master station used in industrial systems, including the following 5 aspects:
Firstly, the application of IO Link in industrial automation; The second is the introduction of ST IO Link main station transceiver; The third is the introduction of our ST”s IO Link main site evaluation board; The fourth is an introduction to the reference design scheme of the IO Link main station; The fifth is a demonstration of the IO Link master station reference design.
The industrial automation system can be said to be composed of many levels. The top level is usually industrial Ethernet to transmit data to the upper control center or monitoring center of the factory, while the middle layer is usually some PLC system for specialized process processing, such as controlling a specialized assembly line or production line. At the bottom, there are usually many industrial sensors, such as temperature sensors, pressure sensors, flow sensors, or proximity sensors, as well as some actuators, such as valves, moving lights, relays, or contactors, which are used for collecting and controlling physical quantities.
Between these levels, there will also be some modules or gateways for conversion and processing work. Therefore, in traditional industrial systems, there are many different level standards and communication protocols on site, resulting in poor modularity and versatility. Because there are both analog signals on site, such as a 4 to 20 mA current loop and analog voltage signals, as well as digital signals. In such an environment, analog signals are particularly susceptible to interference from harsh on-site environments. At the same time, sensors or actuators for analog transmission cannot perform on-site remote configuration or calibration 2835015 TRICONEX nput/output communication card diagnosis work. In order to solve the transmission of the last segment of data to sensors and actuators in industrial field environments, as described earlier, we have introduced a specialized digital interface IO Link to achieve fully digital transmission between the interface modules of sensors and industrial field buses. The bidirectional data transmission makes it possible to parameterize the interaction of on-site data, diagnose and transmit information. By using this technology, remote condition monitoring and predictable maintenance of terminal equipment can be achieved, thereby effectively alleviating the problem of production line downtime.
Its advantages include:2835015 TRICONEX nput/output communication card
Firstly, whether it is a pure digital sensor, an analog sensor after digital quantization, or different types of actuators, unified access can be achieved, thus achieving a simplified and standardized system architecture. Secondly, the transmission of digital signals will have stronger anti-interference ability than the transmission of analog signals, so the reliability of the system will also be stronger. Thirdly, through the bidirectional transmission of digital signals, more intelligent and advanced actuators or sensors can be used, making it easier to achieve status monitoring and system diagnostic protection functions. In this way, any issues and status of the production line can be monitored and maintained in real-time, ensuring the reliability, maintainability, and upgradability of the entire production line, thereby ensuring the minimum downtime.
The following is the specific content about IO Link technology
Firstly, the definition of the IO LINK standard enables data transmission, processing, configuration, and diagnostic information exchange between sensors or actuators and control systems. Secondly, this is a simple peer-to-peer communication architecture, where a master port is connected to a device port. Then, it can achieve compatibility with existing communication architectures, such as reusing cables and interfaces. At the same time, the IO Link system also has backward compatibility upgrade capability, as the master end of the system uses digital binary serial communication to interact with devices, and vice versa.
It can be said that IO link makes the system simpler:
Firstly, this is a universal standard communication method that complies with IEC61131-9. Secondly, IO Link is an intelligent communication system that solves the digital information exchange and transmission of the last distance from the control host to the terminal device. Thirdly, IO Link is simple to use and can be said to be plug and play, compatible with some existing system devices.
Some related products and solutions provided by ST in IO Link communication solutions
Firstly, in this communication system, the IO Link Master, which connects to the upper computer controller, is one of the main key solutions that will be mentioned later. Secondly, ST can provide some communication chips on the IO Link Master project, such as L6360. On the other side of the sensor or actuator end, namely the IO Link Slave end, ST can provide communication chips L6362A and L6364 on this IO Link Slave slave project. According to standards, this three-wire point-to-point communication method is easily compatible with some existing sensor actuators” standard ports, such as M12 standard industrial connectors and M12 standard connector wires. In addition, its advantages include the ability to achieve point-to-point bidirectional signal transmission within a single cable, as well as the general power supply requirements of the master end to the sensor actuator. According to the general requirements of the current industry, the maximum length of this cable is 20 meters, and the three wires inside are 24V, 0V, and data cables. The L+of this chip can support up to 500 milliamperes. If greater current is needed, there are also other L+drivers, including Load Switch IPS and other products, which can provide greater current or can be applied externally. The IO Link communication speed can generally reach a baud rate of 230.4K per COM3, and it also has functions such as status indication and detection.
For some specific application characteristics of IO Link, the communication transceiver system composed of L6360 and L6362A can support three standard data types of IO Link, namely COM1 (4.8k), COM2 (38.4K), and COM3 (230.4K) modes. This communication system can meet the requirements of all modern standards, industrial sensors, and actuators: firstly, it can quickly and very easily configure or reconfigure sensors or actuators. Secondly, it can be widely applied to various standardized sensors or systems that execute information. Thirdly, as a digital communication system, compared to traditional analog signal transmission systems, it can reduce power consumption and improve system efficiency. Fourthly, it has complete diagnostic and protection functions, which can improve the reliability of related systems. Therefore, it can be widely used to drive various digital sensors and actuators, as well as input and output modules of PLC, in order to achieve and meet various requirements of Industry 4.0.
How to Determine the Interference Problem of PROFINET IO Communication
Preliminary Diagnosis of PROFINET Interference Problems
1. Overview
When debugging PROFINET IO communication, it is common to encounter communication failures. One of the reasons for communication failures is interference. PROFINET IO communication equipment often operates in complex industrial electromagnetic environments, and incorrect shielding grounding or non-standard installation may lead to communication interference problems. Since optical signals are not affected by electromagnetic interference, this article only introduces interference problems with electrical signals.
2. How to determine interference issues
If PROFINET IO communication is affected by electromagnetic interference, a simple judgment can generally be made through the following aspects:
2.1. Judging the communication status through PROFINET IO
If the following communication phenomena are found during PROFINET IO communication debugging or operation, it may be affected by electromagnetic interference:
① Occasionally, communication is interrupted and restored.
② When certain on-site devices or specific operations are turned on, communication is interrupted, and on the contrary, communication returns to normal.
2.2. By using STEP7 online diagnostic information to determine and view the diagnostic buffer information of the IO controller, how to detect the presence of frequent communication failures and recovery information between the IO controller and IO devices in the diagnostic buffer, as shown in the following figure, may be affected by electromagnetic interference:
14 STEP7 Device Diagnostic Buffer Information
3. How to troubleshoot and solve interference problems
If a suspected electromagnetic interference causing PROFINET IO communication failure is found, how should we troubleshoot and solve it? The following will be introduced from the following aspects:
3.1 Increase PROFINET IO communication watchdog time
Due to PROFINET IO communication failure occurring during watchdog time, the IO controller did not provide input or output data (IO data) to the IO device, and watchdog time=the number of update cycles allowed for IO data loss × The refresh time is usually automatically calculated and allocated by the IO controller. This time value is generally small. If electromagnetic interference is encountered, the probability of communication failure occurring within the automatically calculated watchdog time will increase. At this time, we can appropriately increase the PROFINET IO communication refresh time or the number of update cycles allowed for IO data loss to increase the watchdog time. However, this method may not solve serious electromagnetic interference problems, and it is recommended to eliminate and solve them through subsequent methods.

4329G TRICONEX controller
4000056-006N Invensys Triconex system
3005 TRICONEX controller
9566-8XX Safety Instrumented System (SIS)
9566-810 TRICONEX controller
3007A TRICONEX nput/output communication card
4329G Invensys Triconex system
3607E Invensys Triconex system
3626X TRICONEX controller
2401 Invensys Triconex system
3002 TRICONEX nput/output communication card
3723X Invensys Triconex system
PI3381 Invensys Triconex system
8105N Safety Instrumented System (SIS)
MP3101S2 Invensys Triconex system
9566-810F TRICONEX controller
3564 TRICONEX controller
HD8311 Invensys Triconex system
4352B Safety Instrumented System (SIS)
3706A Invensys Triconex system
8105N Invensys Triconex system
PS8310 TRICONEX nput/output communication card
3601E TRICONEX controller
3005 TRICONEX nput/output communication card
2301 TRICONEX controller
4000093-510 Invensys Triconex system
4000056-002 TRICONEX controller
2351 Invensys Triconex system
4329G TRICONEX nput/output communication card
3706A Safety Instrumented System (SIS)
3501E Invensys Triconex system
PXIe-5450
PXI-2533
CROO-9104
CRLO-9012
CRKO-9104
CRJO-9042
CRJO-9022
CRIO-P048
CRIO-P004
CRIO-O104
CRIO-O022
cRIO-FRC
CRIO-9Q04
CRIO-9P33
CRIO-9O33
cRIO-9958
cRIO-9939
cRIO-9937
cRIO-9803
cRIO-9148
cRIO-9116
cRIO-9114
cRIO-9113
cRIO-9112
cRIO-9111
cRIO-9103
cRIO-9102
cRIO-9101
CRIO-90T8
CRIO-90E2
cRIO-9082
cRIO-9081
cRIO-9076
cRIO-9075
cRIO-9074
cRIO-9073
cRIO-9068
cRIO-9067
cRIO-9066
cRIO-9065
cRIO-9064
cRIO-9063
cRIO-9058
cRIO-9057
cRIO-9056
cRIO-9055
cRIO-9054
cRIO-9053
CRIO-904W
CRIO-904Q
cRIO-9049
cRIO-9048
cRIO-9047
cRIO-9046
cRIO-9045
cRIO-9043
cRIO-9042
cRIO-9041
cRIO-9040
cRIO-9039
cRIO-9038
cRIO-9037
cRIO-9036
cRIO-9035
cRIO-9034
cRIO-9033
cRIO-9032
cRIO-9031
cRIO-9030
cRIO-9025
cRIO-9024
cRIO-9023
cRIO-9022
cRIO-9014
cRIO-9012
CRIO-900R
cRIO-9004
cRIO-9002
CRII-9104
CRII-9004
cRI0-9118
cRI0-9116
cRI0-9113
cRI0-9112
cRI0-9104
cRI0-9103
cRI0-9025
CRAQ-9179
GPIB-140A 186135G-01
NI-9853

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts