Description
3300/20-12-01-01-00-00 Parameter settings
3300/20-12-01-01-00-00 Parameter settings
Module Clips Drive controller servo moto
The 3300/20-12-01-01-00-00 EGD Communication Gateway Integrates process control and other automation systems using both Ethernet TCP/IP and serial (RS232 / RS422 / RS485) communications capabilities. Permits Ethernet communications with 3500 Rack Configuration Software. The 3300/20-12-01-01-00-00 also supports proprietary Bently Nevada protocol along with Modicon Modbus and Modbus/TCP protocols.
3300/20-12-01-01-00-00Communication Gateway integrates easily with process control networks and other automation systems using both Ethernet TCP/IP and serial (RS232 / RS422 / RS485) communications capabilities. Permits communications via Modbus using 3500 Rack Configuration Software. The 3300/20-12-01-01-00-00 can be configured using the 3500 Rack Configuration software to produce a custom or condensed Modbus map for communications using fixed or configurable registers. All vital rack information including direct vibration, gap, 1X, 2X, Smax, channel statuses, rack status, trip multiply, rack reset, and others can be easily communicated.
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
Caijing: Can we say that ABB is part of Made in China 2025?
Spiesshofer: Of course, we are a very important part. We were involved in coming up with this idea and we will be deeply involved in making it happen. Now we have about 18,000 employees in China, with many manufacturing plants and large R&D centers. We also have a software center in China to develop artificial intelligence technology used on robots. At present, China not only has a market for ABB, but also has an excellent team that I am very proud of.
Caijing: The current problem is that Made in China 2025 has posed a challenge to Europe and the United States. They believe that they need to pay close attention to it. The current trade policy of the United States is also very targeted at Made in China 2025. How do you view this criticism?
Spiesshofer: I don’t want to comment too much on policy. China’s competitiveness has grown significantly over the past few decades, but the rest of the world has not stood still. Take Europe’s technological development, for example. Europe is playing a leading role in the fourth industrial revolution.
I want to have a level playing field and give everyone a chance. It is true that China is an economic power, and there are other economic powers in the world. The world is big enough to accommodate the friendly coexistence of all these forces.
The Industrial Internet is inseparable from industrial control
Caijing: Regarding digitization, there are two questions. Why digitization? How to digitize?
Spiesshofer: People have been benefiting from technologies that improve productivity. Through digitalization, we can improve productivity very well. We introduce a closed loop of “perception, analysis, and action” to sense through digital technologies such as sensors , communication devices, and connected devices. We learn the operation status of assets through sensor technology, upload it to the cloud, and summarize the information. After we have the information, we need to analyze the information. AI technology plays an important role in this process, that is, intelligent algorithms for analyzing data. Then comes the action part, where you need to get into the control loop of an industrial process or maintenance plan to make it work. Like AI, we should not be afraid of digitalization, but rather see it as an opportunity to create prosperity and wealth.
Caijing: Regarding the Industrial Internet, GE, which proposed this concept, has changed its CEO and its performance is poor. Does this mean that its development is not going smoothly? How do you see the future of the Industrial Internet?
Spiesshofer: If used well, the industrial Internet can be very effective. To review what I said: perception, analysis and action are required. Our strategy is different from GE’s strategy. They stop after sensing and analyzing, while we still have an action phase. Through our control system, the Industrial Internet is connected to the control loop through intelligent algorithms, which can create a lot of value for customers.
ABB is one of the two major industrial control technology companies in the world. Siemens is the leader in the discrete industry. We are second only to Siemens. In the process industry, ABB ranks first and Siemens second. This is the biggest difference between ABB and GE: GE does not control the circulation or has no control ability. It is like you are a doctor. You only diagnose high fever and give the patient your suggestions, but ABB not only gives suggestions, but also helps patients implement the suggestions. .
Caijing: You also mentioned the concept of global energy internet. Is this a future concept or something that is already happening? What is its value?
Spiesshofer: The energy challenge facing people today is how to provide predictable, high-quality, low-carbon baseload energy. There are different ways to achieve this, bringing together different renewable and conventional energy sources, plus nuclear power. All of the previously mentioned energy sources can also be connected together through a globally interconnected power grid. We must also incorporate active demand-side management and intelligent demand-side optimization to achieve peak-cutting effects through demand-side model optimization.
Overall, there will be a globally interconnected power system in the future that will operate completely differently with demand-side dynamics ranging from long distances all the way to local. The roof of your house is equipped with solar energy. It may be a power station in the morning, a power user in the afternoon, and it may be an energy storage power station in the evening because you are charging your electric car. Optimizing all of this is what I call the Internet of Power, and that’s what we’re working on.
Bently Nevada 330100-90-00 Proximitor Sensor
Bently Nevada 3500/25-02-01-05 Phase marking module
Bently Nevada 3500/33-01-05 16-Channel Control Module
Bently Nevada 3500/40M-01-05 Vibration module with initial calibration
Bently Nevada 3500/42-09-05 Vibration module with master calibration
Bently Nevada 3500/25-SIL2-01-01-05 Phase indicator module
Bently Nevada Communication module 3500/92-04-01-05
Bently Nevada 3500/61-Sil2-01-05 Temperature module with master calibration
Bently Nevada 330104-00-04-10-02-00 Proximity Probes
Bently Nevada 330104-00-07-50-02-00 Proximity Probes
Bently Nevada 330905-05-10-10-02-00 NSv Proximity Probes
Bently Nevada 330104-00-07-10-01-00 Proximity Probes
Bently Nevada 330104-00-25-10-01-00 Proximity Probes
Bently Nevada 330851-04-000-020-90-00-00 Proximity Probes
Bently Nevada 136188-02 Ethernet/RS232 Modbus I/O Module
Bently Nevada 136180-01 Communication Gateaway Module
Bently Nevada 330104-00-23-10-02-00 Proximity Probes
Bently Nevada 330525-00 Velomitor XA Piezo-velocity Sensor
Bently Nevada 177313-01-01 Proximity System Test Kit TK-3E
Bently Nevada 177313-01-02 Proximity System Test Kit TK-3E
Bently Nevada 21000-16-05-00-105-03-02 Proximity Probe Housing Assemblies
Bently Nevada 136634-0010-01 10 Foot (3 metres) Cable (PVC)
Bently Nevada 330500-02-00 Velomitor Piezo-velocity Sensor
Bently Nevada 330104-00-09-15-01-00 Proximity Probes
Bently Nevada 81544-01 I/O Module Signal & Record Terminals
Bently Nevada 21504-00-08-05-02 Probe Proximity Vibration
Bently Nevada 21747-040-00 Proximitor Probe Extension Cable
Bently Nevada 21504-00-24-10-02 Probe Proximity Vibration
Bently Nevada 330130-040-00-00 Extension Cable
Bently Nevada 330101-00-36-10-02-00 Proximity Probes
Bently Nevada 330101-00-36-10-02-00 Proximity Probes
Bently Nevada 330101-00-16-10-02-00 Proximity Probes
Bently Nevada 330130-080-02-00 Extension Cable
Bently Nevada 330130-085-02-00 Extension Cable
Bently Nevada 330101-00-14-10-02-00 Proximity Probes
Bently Nevada 137482-01 Oil Whirl/Whip Kit
Bently Nevada 126376-01 RK 4 Rotor Kit
Bently Nevada 123456-01 Rotor Kit with Oil Swirl/Whip Kit
330902-00-38-05-02-00 Bently Nevada NSv Proximity Probes
Bently Nevada 330104-00-11-10-02-00 Proximity Probes
330104-00-13-10-01-00 Bently Nevada Proximity Probes
Bently Nevada 330851-02-000-080-10-00-00 Proximity Probes
BENTLY 3500/05-01-02-05-00-01 System Rack
Bently Nevada 135137-01 Position I/O Modul 3500/45
Bently Nevada 135137-01 I/O Module 3500/45
3500/53 133388-01 BENTLY Overspeed Detection Module
133442-01 Bently Nevada I/O Module 3500/55M
146031-01 Bently Nevada Transient Data Interface I/O Module
330180-X1-CN Proximity Sensor Bently Nevada
330130-040-01-CN Bently Nevada 3300 XL Extension Cable
330130-040-00-00 Bently Nevada 3300 XL Standard Extension Cable
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts