Sale!

3511 TRICONEX nput/output communication card

¥666.00

3511 TRICONEX nput/output communication card
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

3511 TRICONEX nput/output communication card
3511 TRICONEX nput/output communication card
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
Application Scheme of Industrial Ethernet Remote IO Module in Intelligent Manufacturing Workshop
With the advent of Industry 4.0, intelligent manufacturing has become a trend in industrial production. Intelligent manufacturing requires efficient, stable, and reliable industrial Ethernet remote IO modules to monitor the production process. This article will share an application case of an intelligent manufacturing workshop based on industrial Ethernet remote IO module.3511 TRICONEX nput/output communication card
The production process of this intelligent manufacturing workshop is mainly divided into two parts: injection molding and automated assembly. The injection molding process requires controlling parameters such as the melting temperature of the melt, the speed and pressure of the injection molding machine. The automated assembly process requires controlling the actions of the assembly robot and detecting the quality of the product. In addition to these production process data, there are also equipment production data such as daily and weekly production in the workshop, as well as equipment status data such as operation, manual, automatic, mold adjustment, and alarm.
In the past, the production process of the factory mainly relied on traditional hard wiring to control the production process, resulting in low work efficiency due to the need for frequent replacement of transmission lines to meet production needs. Moreover, it is very difficult to collect a large number of types of detection and monitoring data for intelligent manufacturing. In order to improve efficiency, production quality, and reliability, the factory has introduced the industrial Ethernet remote IO module MxxT using barium rhenium technology.
The injection molding machine itself comes with MODBUS industrial control bus data or basic status signal output. The barium rhenium technology remote IO module collects data from the device interface RS232/RS485 port, collects status information of the injection molding machine such as startup, operation, and pause, and uploads it to the injection molding machine controller, or wirelessly uploads it to the cloud server. Based on devices, according to the communication protocols and interfaces of different devices, data is obtained by calling their interface channels, and then transmitted to the server.
The remote IO module is connected to the controller of the injection molding machine, and the operation data of the injection molding machine is uploaded and distributed wirelessly, achieving remote monitoring and intelligent control of the injection molding machine. In addition, the remote I/O module supports perceptual access to peripheral devices such as mold temperature machines, cutting machines, and dryers for injection molding machines, providing users with smart factory services.
During the injection molding process, the industrial Ethernet remote IO module transmits real-time data such as temperature, pressure, and speed to the main controller for monitoring and adjustment, ensuring the stability and compliance of production parameters under different conditions. In the automated assembly process, the industrial Ethernet remote IO module collects data through sensors and other devices, and transmits the relevant data to the main controller for adjustment of relevant actions. For example, the industrial Ethernet remote IO module can monitor the actions of assembly robots, detect the accuracy of product assembly and product quality, and ensure the production quality and stability of the product. At the same time, all production data can also be collected and analyzed remotely, helping enterprise managers better monitor production efficiency and quality.
By introducing industrial Ethernet remote IO modules, this intelligent manufacturing workshop not only improves production efficiency and stability, but also reduces labor and energy costs. Because the industrial Ethernet remote IO module can help enterprises complete the collection and monitoring of production data with one click, as well as avoid unnecessary line replacement and the need for workers to enter and exit the production process, thereby reducing costs and improving production efficiency for enterprises.
In summary, the application of industrial Ethernet remote IO modules in intelligent manufacturing workshops not only improves production efficiency and quality, reduces costs, but also achieves intelligent and digital management of production processes, bringing more opportunities and development space for enterprise development.3511 TRICONEX nput/output communication card
In addition, this device is widely used for networking and data collection of industrial equipment such as injection molding machines, air compressors, CNC machine tools, on-site PLCs, instruments, sensors, CNC, and electromechanical equipment.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations. In this article, I will focus on digital IO, and in subsequent articles, I will introduce analog IO.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both Di and DO systems, size and heat dissipation issues need to be considered.
Digital input
size
heat
Supports all input types
Type 1, 2, 3, Input
Supports 24 V and 48 V inputs
Robust operating specifications
Wire breakage detection
Digital output
Support for different types of output driver configurations
size
Integrated demagnetization of inductive loads
Heat – When driving multiple outputs
Drive accuracy
diagnosis
For digital input, it is also important to note that it supports different input types, including 1/2/3 type inputs, and in some cases, 24V and 48V inputs. In all cases, reliable operating characteristics are crucial, and sometimes circuit detection is also crucial.
For digital outputs, the system uses different FET configurations to drive the load. The accuracy of the driving current is usually an important consideration. In many cases, diagnosis is also very important.
We will explore how integrated solutions can help address some of these challenges.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used.
Figure 1 shows a typical discrete method for constructing digital input circuits.
Figure 1. Considerations for digital input and output modules.
This type of design is suitable for a certain number of digital inputs; 4 to 8 per board. Beyond this number, this design will soon become impractical. This separation scheme can bring various problems, including:
High power consumption and related board high temperature points.
Each channel requires an optocoupler.
Excessive components can lead to low FIT rate and even require larger devices.
More importantly, the split design method means that the input current increases linearly with the input voltage. Assuming a 2.2K Ω input resistor and 24V V is used. When the input is 1, for example, at 24V, the input current is 11mA, which is equivalent to a power consumption of 264mW. The power consumption of the 8-channel module is greater than 2W, and the power consumption of the 32-bit module is greater than 8W. Refer to Figure 3 below
From a cooling perspective alone, this split design cannot support multiple channels on a single board.
One of the biggest advantages of integrated digital input design is the significant reduction in power consumption, thereby reducing heat dissipation. Most integrated digital input devices allow configurable input current limitations to significantly reduce power consumption.
When the current limiting value is set to 2.6mA, the power consumption is significantly reduced, with each channel approximately 60mW. The rated value of the 8-channel digital input module can now be set below 0.5
Another reason for opposing the use of split logic design is that sometimes DI modules must support different types of inputs. The standard 24V digital input specifications published by IEC are divided into Type 1, Type 2, and Type 3. Type 1 and Type 3 are usually used in combination because their current and threshold limits are very similar. Type 2 has a current limit of 6mA, which is higher. When using the split method, it may be necessary to redesign as most discrete values need to be updated.
However, integrated digital input products typically support all three types. Essentially, Type 1 and Type 3 are generally supported by integrated digital input devices. However, in order to meet the minimum current requirement of 6mA for Type 2 input, we need to use two channels in parallel for one field input. And only adjust the current limiting resistance. This requires a circuit board change, but the change is minimal.
For example, the current maximum integrated (now part of ADI company) DI device has a current limiting value of 3.5mA/channel. So, as shown in the figure, we use two channels in parallel. If the system must be connected to a Type 2 input, adjust the REFDI resistance and RIN resistance. For some newer components, we can also use pins or select current values through software.
To support a 48V digital input signal (not a common requirement), a similar process needs to be used, and an external resistor must be added to adjust the voltage threshold at one end of the field. Set the value of this external resistor so that the current limiting value * R+threshold of the pin meets the voltage threshold specification at one end of the field (see device data manual).
Finally, due to the connection between the digital input module and the sensor, the design must meet the requirements of reliable operating characteristics. When using a split type scheme, these protective functions must be carefully designed. When selecting integrated digital input devices, ensure that the following are determined according to industry standards:
Wide input voltage range (e.g. up to 40V).
Able to use on-site power supply (7V to 65V).
Capable of withstanding high ESD (± 15kV ESD air gap) and surges (usually 1KV).
Providing overvoltage and overheating diagnosis is also very useful for MCU to take appropriate actions.
Design a High Channel Density Digital Output Module
A typical discrete digital output design has a FET with a driving circuit driven by a microcontroller. Different methods can be used to configure FETs to drive microcontrollers.
The definition of a high-end load switch is that it is controlled by an external enable signal and connects or disconnects the power supply from a given load. Compared to low-end load switches, high-end switches provide current to the load, while low-end switches connect or disconnect the grounding connection of the load to obtain current from the load. Although they all use a single FET, the problem with low-end switches is that there may be a short circuit between the load and ground. High end switches protect the load and prevent short circuits to ground. However, the implementation cost of low-end switches is lower. Sometimes, the output driver is also configured as a push-pull switch, requiring two MOSFETs. Refer to Figure 6 below:
Integrated DO devices can integrate multiple DO channels into a single device. Due to the different FET configurations used for high-end, low-end, and push-pull switches, different devices can be used to achieve each type of output driver.
Estimated power consumption of digital input modules constructed using split logic.
Internal demagnetization of inductive loads
One of the key advantages of integrated digital output devices is their built-in inductive load demagnetization function.
Inductive load is any device containing a coil that, after being energized, typically performs some mechanical work, such as solenoid valves, motors, and actuators. The magnetic field caused by current can move the switch contacts in relays or contactors to operate solenoid valves or rotate the motor shaft. In most cases, engineers use high-end switches to control inductive loads, and the challenge is how to discharge the inductance when the switch is turned on and the current no longer flows into the load. The negative effects caused by improper discharge include: possible arcing of relay contacts, significant negative voltage spikes that damage sensitive ICs, and the generation of high-frequency noise or EMI, which can affect system performance.
The most common solution for discharging inductive loads in a split type scheme is to use a freewheeling diode. In this circuit, when the switch is closed, the diode is reverse biased and non-conductive. When the switch is turned on, the negative supply voltage through the inductor will cause the diode to bias forward, thereby attenuating the stored energy by guiding the current through the diode until it reaches a stable state and the current is zero.
For many applications, especially in the industrial industry where each IO card has multiple output channels, the diode is usually of large size, which can lead to a significant increase in cost and design size.
Modern digital output devices use an active clamping circuit to achieve this function within the device. For example, Maxim Integrated adopts a patented SafeDemag ™) Function, allowing digital output devices to safely turn off loads without being limited by inductance.
When selecting digital output devices, multiple important factors need to be considered. The following specifications in the data manual should be carefully considered:
Check the maximum continuous current rating and ensure that multiple outputs can be connected in parallel when needed to obtain higher current drivers.
Ensure that the output device can drive multiple high current channels (beyond the temperature range). Refer to the data manual to ensure that the conduction resistance, power supply current, and thermoelectric resistance values are as low as possible.
The output current driving accuracy specifications are also important.
Estimated power savings for digital input modules using integrated DI chips.
Diagnostic information is crucial for recovering from operating conditions that exceed the range. Firstly, you want to obtain diagnostic information for each output channel. This includes temperature, overcurrent, open circuit, and short circuit. From an overall (chip) perspective, important diagnoses include thermal shutdown, VDD undervoltage, and SPI diagnosis. Search for some or all of these diagnoses in integrated digital output devices.
Programmable digital input/output device
By integrating DI and DO on the IC, configurable products can be built. This is an example of a 4-channel product that can be configured as input or output.
It has a DIO core, which means that a single channel can be configured as DI (Type 1/3 or Type 2) or digital output in high-end or push-pull mode. The current limiting value on DO can be set to 130mA to 1.2A. Built in demagnetization function. To switch between type 1/3 or type 2 digital inputs, we only need to set one pin without using an external resistor.
These devices are not only easy to configure, but also sturdy and durable, and can work in industrial environments. This means high ESD, providing up to 60V power supply voltage protection and line grounding surge protection.
This is an example of a potentially completely different product (configurable DI/DO module) that can be implemented through an integrated approach.
conclusion
When designing high-density digital input or output modules, it is evident that when the channel density exceeds a certain number, the split scheme is meaningless. From the perspectives of heat dissipation, reliability, and size, it is necessary to carefully consider integrated device options. When selecting integrated DI or DO devices, it is important to pay attention to some important data points, including reliable operating characteristics, diagnosis, and support for multiple input-output configurations.
What are the types of integrated IO modules3511 TRICONEX nput/output communication card
For a programmable logic controller, IO fulfills the responsibilities of data acquisition and instruction output. What control objectives can a PLC achieve, and the quantity and type of IO are crucial. For general integrated PLCs, the number and types of IO interfaces are constant. Some friends may ask, what if you encounter a complex control project with insufficient IO ports in the PLC? Don”t worry, nowadays PLCs have communication interfaces that can be connected to other IO couplers to achieve IO expansion. So, what are the types of IO modules that we can integrate in our daily lives? Actually, it can be mainly divided into four categories, namely:
1. Digital signal acquisition IO can achieve discontinuous signal acquisition, and a typical IO type is a counter input IO module.
Technology Oasis • Source: Guangcheng CAN Bus • Author: Guangcheng CAN Bus • 2022-05-09 09:52 • 1740 readings
For a programmable logic controller, IO fulfills the responsibilities of data acquisition and instruction output. What control objectives can a PLC achieve, and the quantity and type of IO are crucial. For general integrated PLCs, the number and types of IO interfaces are constant. Some friends may ask, what if you encounter a complex control project with insufficient IO ports in the PLC? Don”t worry, nowadays PLCs have communication interfaces that can be connected to other IO couplers to achieve IO expansion. So, what are the types of IO modules that we can integrate in our daily lives? Actually, it can be mainly divided into four categories, namely:
1. Digital signal acquisition IO can achieve discontinuous signal acquisition, and a typical IO type is a counter input IO module.
2. Digital output IO, which can send out command signals of digital quantities to control actuators, such as PWM IO, can send pulse signals to control servo motors and stepper motors. In addition to PWM IO, we often use relay output type IO.
3. After discussing digital IO, let”s talk about analog IO. Firstly, analog input IO includes voltage analog input IO, current analog input IO, temperature analog input IO, etc. They collect continuous signals.
4. Finally, there is the output type IO of analog quantity, mainly including voltage analog quantity output type IO and current analog quantity output type IO. Some friends may ask why there is no temperature this time, but there are relatively few applications, mainly based on voltage and current types.3511 TRICONEX nput/output communication card
Industrial automation solutions, starting with remote IO modules!
The remote IO module is mainly used for collecting analog and digital signals on industrial sites, and can also output analog and digital signals to control equipment. It is possible to expand the input and output ports of data processing equipment such as PLCs and collection instruments. For example, a PLC only has 10 analog input interfaces, but if 30 analog quantities need to be collected on site, remote IO expansion needs to be added.
Furthermore, due to the distance between the equipment and the main control PLC or industrial computer, RS-485 bus is usually used for transmission. There are also some factories with high levels of automation that use industrial Ethernet to control remote IO modules. In the past, when laying lines between equipment and cabinets, people had to connect them one by one, which greatly increased the cost of cables and construction time. Moreover, if the distance was relatively long, they also faced problems such as voltage attenuation. And with the remote IO module, it effectively solves this problem. If your cabinet is 200 meters away from the site and you do not use remote IO, then you need to lay out each signal line for 200 meters. Installing the remote IO module on site can save you a lot of cable costs and reduce the complexity of construction from a cost perspective.
Simply put, sometimes some IO is set up in the on-site device cluster, which can be connected to the PLC through a communication cable to send the signal to any place where it is needed, saving wiring and PLC”s own IO points. Sometimes, the logical “remote” is because the allowed number of “local IO” cannot meet the actual needs, and it needs to be connected to the “remote IO template”, depending on the actual situation.
In addition, the general cabinet room is located on the device site. But some control signals, such as emergency stop and bypass, are implemented in the control room, so remote IO modules need to be used to send these signals to the control system in the cabinet room.
Why use remote I/O?
1. Because in some industrial applications, it is impossible to install PLCs with local I/O modules near on-site equipment due to harsh environments.
2. When you want to place the I/O module near the field device to eliminate long multi-core cables, you can receive signals from distant sensors and send remote control signals to control valves, motors, and other final actuators. The signal can be transmitted at any distance using various transmission protocols such as Ethernet and Profibus through high-speed media such as twisted pair and fiber optic.
3. Multiple transmission protocols such as Ethernet and Profibus can be used to send signals at any distance on high-speed media such as twisted pair and fiber optic.
The barium rhenium technology MXXT remote IO module uses industrial grade components with a wide working voltage of DC9-36V, which can operate normally within the range of -20~70 ℃. It supports RS485/232 communication mode, and the communication protocol adopts standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. We strive to fully meet the needs of our customers with an electrical and mechanical system that is anti-interference, resistant to harsh environments, and compatible with general use. It has stable performance, reliable quality, short delivery time, and fast response.
Advantages of Barium Rhenium Remote I/O Module
1. It can be controlled by remote commands.
2. Save the cost of using industrial control computers and IO cards, and Ethernet I/O modules can be directly connected to the upper computer system;
3. Replacing 4-20mA signal transmission with 10/100MHz Ethernet transmission has improved transmission speed;
4. Replacing various instrument controller signal lines with an Ethernet cable reduces the attenuation of remote signal transmission;
5. The signal cable of the instrument controller only needs to be connected to the Ethernet I/O module, greatly reducing cable costs and wiring workload.
6. Convenient installation method. Rail installation, high reliability, strong anti-interference ability, and more convenient on-site installation.
What IO combinations can a mini PLC combine with to achieve automated control?
At present, there are two main design modes for controllers like PLC, one is integrated design and the other is modular design. From the name, we can feel that there are two different PLCs, one that cannot be disassembled and the other that can be disassembled. Due to the fact that the main control module and IO module of the modular PLC can be spliced as needed, its volume and weight are usually very small, and we cannot call it a mini PLC too much. So, what IO combinations can such a small gadget combine with to achieve automation control? Let”s take a brief inventory:3511 TRICONEX nput/output communication card
1. Firstly, there is the digital quantity acquisition IO module, which is used to collect digital quantity information. Typical examples include counter IO, PNP type digital quantity acquisition IO, NPN type digital quantity acquisition IO, etc.
2. Then there is the digital output IO module, which is used to send digital instructions. The most typical example is PWM output IO, which can output pulse signals to control servo motors or stepper motors for operation.
3. After talking about digital IO, let”s talk about analog IO. Analog signal acquisition type IO includes voltage signal acquisition, current signal acquisition, and temperature signal acquisition. The IO for collecting temperature signals includes PT100, PT1000, and various thermocouple temperature acquisition modules.
4. Finally, there are analog output IO, as well as output current signals and voltage signals.
In addition to the above IO modules, our modular PLC also supports extended communication interfaces, further enhancing the equipment”s scalability.
Module Input/Output (I/O) Knowledge3511 TRICONEX nput/output communication card
Module Input/Output (I/O) Knowledge
I think it”s necessary to talk about the sorting of the input and output ports of the module. Generally, we can divide it into IO functional division and IO specifications.
The purpose of the former is mainly to convert all functions into actual division into MCU IO ports, while the purpose of the latter is to determine the specifications of all IO ports. Of course, you can completely skip these tasks, and it”s also possible. Depending on the company”s requirements, I think individuals still consider them as a work habit.
The following examples are all created for my blog post. If there are any duplicate names, please do not contact me.
Looking at the above figure, first determine all input and output functions and power input, as well as communication.
Then separate the power distribution with different lines, and start organizing each power supply line and processing process. The final purpose of the entire diagram is to clearly allocate the input and output sequence.
The IO specification is to provide a detailed description of all interfaces, crystal oscillators, and other information to the MCU.
1. Enter the number of low effective interfaces and how much pull-up resistance (switch wet current) is required (how much current does the microcontroller need to absorb, which may be injected into the microcontroller after pull-up).
2. Enter the number of highly effective interfaces, how many pull-down resistors are required (switch wet current), (how much current does the microcontroller need to absorb, and it is possible to inject the microcontroller after the switch is effective)
3. Number of analog input interfaces, evaluate whether the analog ports of the microcontroller are sufficient, and confirm the required analog conversion accuracy. Evaluate whether the A/D conversion reference voltage needs to be replaced (to meet accuracy requirements). Consider how many power supplies need to be tested and how many analog input ports are configured.
4. Evaluate the requirements for crystal oscillator accuracy and whether a phase-locked loop is required.
The above requirements are mainly aimed at module design and need to be confirmed during the early development of the module. All requirements can be organized using an Excel table and displayed in the diagram.
Distributed dual Ethernet IO module
The distributed dual Ethernet IO module adopts an industrial grade design, which meets the demanding industrial application scenarios. It is equipped with a dedicated high-performance Ethernet chip, which can quickly achieve cascade networking between IO modules without the need for repeated wiring, saving on-site wiring costs.
The distributed dual Ethernet IO module comes with switch input, switch output, relay output, analog input, analog input, thermal resistance input, etc. It supports high-speed pulse input counting and high-speed pulse output, and is designed specifically for industrial field data collection, measurement, and control. The distributed dual Ethernet IO module supports Modbus TCP protocol and Modbus RTU protocol for uplink, which can quickly connect to existing DCS, SCADA, PLC, HMI and other systems. The distributed dual Ethernet IO module supports one RS485 interface and supports Modbus RTU Master function. It can expand the IO module, read and write intelligent instrument data, or connect to HMI, DCS, PLC and other devices as a Modbus Slave.
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
Barium rhenium technology remote IO modules are widely used in IoT scenarios such as intelligent transportation, smart water conservancy, smart agriculture, smart campuses, smart communities, smart power distribution, and smart water conservancy.
With the development of IIOT industrial Internet of Things technology, more and more traditional assets need to be connected to the internet, achieving unified data collection and analysis, and breaking the phenomenon of traditional device information silos. The barium rhenium technology remote IO module M160T, which supports IoT protocols, has become an excellent choice for many enterprises to achieve device networking, remote control, and data collection based on the compatibility of existing devices and the accessibility of IoT platforms!
Ethernet communication technology is a mature communication technology because it has the characteristics of stability, reliability, mature technology, fast transmission speed, and fast construction wiring. Due to its wide application, Ethernet communication through the MQTT protocol is the main way for enterprise equipment to go to the cloud. Barium rhenium technology can quickly collect data and control such as air compressor room, property living pump room, street light control, liquid level collection, temperature and humidity collection through Ethernet remote IO module.3511 TRICONEX nput/output communication card
So, why is the remote IO module of barium rhenium technology widely used in the field of industrial IoT? The specific reasons are as follows.
1. Actively connect to cloud platforms:
Based on the characteristics of Ethernet communication networks, the barium rhenium technology remote IO module does not require complex settings such as peanut shells to achieve the Internet of Things. The barium rhenium technology remote IO module needs to support both TCP client and TCP server functions.
2. Compatibility with existing systems:
It supports TCP Server and Modbus TCP protocol functions, and is compatible with device access of traditional upper level systems or HMI TCP clients.
3. Support multiple IoT platforms:
Supports standard MQTT, Modbus TCP, and Modbus RTU over TCP protocols. It can be connected to public cloud IoT platforms and user built MQTT private clouds through the MQTT protocol. It can also be connected to SCADA and DCS systems through Modbus TCP.
4. Rich IO interfaces and scalability:
There are many types of IO for industrial field data collection and replication. The Ethernet IO module of barium rhenium technology supports signal acquisition from various devices such as 4-20Ma, 0-20mA, 0-5V, 0-10V, RS485, DI, DO, PT100, PT1000, pulse input, pulse output, etc. At the same time, it expands the instrument data reading ability of RS485 devices.
5. Convenient installation method:
The volume of industrial on-site control boxes is often very limited, and the barium rhenium technology Ethernet IO module adopts a direct plug-in connection terminal and rail installation method. The compact volume greatly saves space in the control box!
6. Industrial grade design
The industrial environment is harsh, and the remote IO module using barium rhenium technology needs to adopt an industrial grade design, which can work continuously and stably in harsh environments.
Through the use of barium rhenium technology remote IO modules, there is no need to replace existing various enterprise assets, and the digital transition to the Internet of Things platform can be quickly achieved. Therefore, barium rhenium technology remote IO modules are widely used in industrial IoT, such as intelligent real estate, intelligent campus, intelligent factory, intelligent transportation, intelligent water conservancy, intelligent agriculture, intelligent campus, intelligent community, intelligent transportation, and many other industries.
What is the role of distributed IO modules and what are their main applications in
The distributed IO module transmits status signals from the measurement and control field to various measurement and control fields for control. It is mainly used in the industrial field and can also be used for detection of equipment such as air conditioners and motors.
In distributed systems, there are important business data closely related to system operation, as well as data related to nodes, application services, and data services, which are crucial for the normal operation of clusters.
IO on general PLCs is usually closely followed by CPU units, but in order to facilitate connection and maintenance, the concept of distributed IO has been proposed in the industrial field. That is to say, the IO unit can be arranged far away from the PLC CPU unit and communicate through the network communication protocol of the device layer.
The distributed IO module is developed for detecting and implementing remote control of various types of standard analog and switch signals (frequency, pulse, or switch state signals) in the field of measurement and control. The series of modules can digitize the test signal front-end and transmit it to the host through optical fiber; Or transmit the control instructions sent by the host to the controlled device to achieve remote control. Especially suitable for state detection and control of complex electromagnetic environments in power, industrial control, on-site switchgear, and large power equipment.
The role of distributed IO modules:
1. Support 4-way switch digital quantity
2. Supports 8 analog inputs
3. 4 relay outputs, 1 RS485 serial port data acquisition to Ethernet
4. 485 to Ethernet serial server
5. Supports Modbus to TCP/UDP protocol conversion
6. Supports virtual serial ports and interfaces with various configuration software
7. Support 0-5V, 0-10V, 0-30V range acquisition
8. Supports 0-20ma and 4-20ma range acquisition

2290614 Safety Instrumented System (SIS)
3704E TRICONEX controller
3301 TRICONEX nput/output communication card
3703E TRICONEX controller
EPI3382 Invensys Triconex system
3504E Invensys Triconex system
MP3101 TRICONEX nput/output communication card
3504E TRICONEX nput/output communication card
8312 TRICONEX nput/output communication card
3708E TRICONEX controller
3503E Invensys Triconex system
4352AN Invensys Triconex system
4211 TRICONEX controller
7760059030 TRICONEX nput/output communication card
4000093-145 Safety Instrumented System (SIS)
9761-210 TRICONEX nput/output communication card
4351B TRICONEX nput/output communication card
3721C TRICONEX controller
3720 Safety Instrumented System (SIS)
3708E Safety Instrumented System (SIS)
3506X Safety Instrumented System (SIS)
8111 TRICONEX nput/output communication card
2401 Safety Instrumented System (SIS)
8310N2 TRICONEX nput/output communication card
4352B TRICONEX controller
3704E Invensys Triconex system
4000066-025 Invensys Triconex system
8120E Safety Instrumented System (SIS)
8120E Invensys Triconex system
4000093-145 TRICONEX nput/output communication card
T8461 TRICONEX nput/output communication card
4000103-510 Safety Instrumented System (SIS)
3700A Invensys Triconex system
3721 TRICONEX controller
3009 Invensys Triconex system
4000093-110N Safety Instrumented System (SIS)
3664 TRICONEX controller
3708EN Invensys Triconex system
MP3101S2 TRICONEX controller
3005 Invensys Triconex system
3481 TRICONEX controller
3708E TRICONEX nput/output communication card
4000093-510 TRICONEX controller
3008 Safety Instrumented System (SIS)
AO3481 TRICONEX controller
3564 Safety Instrumented System (SIS)
9761-210 Invensys Triconex system
4119 TRICONEX controller
3101 Safety Instrumented System (SIS)
9662-810 TRICONEX controller
EPI3382 TRICONEX controller
9566-810 Safety Instrumented System (SIS)
3502EN2 Safety Instrumented System (SIS)
4210 TRICONEX controller
4329 TRICONEX controller
3009 Safety Instrumented System (SIS)
3604E Safety Instrumented System (SIS)
3502E Invensys Triconex system
3006 Invensys Triconex system
HD8311 Safety Instrumented System (SIS)
3564 TRICONEX nput/output communication card
4000093-510 Safety Instrumented System (SIS)
3481 Invensys Triconex system
3481 TRICONEX nput/output communication card
3005 Safety Instrumented System (SIS)

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts