Sale!

3625A TRICONEX controller

¥666.00

3625A TRICONEX controller
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

3625A TRICONEX controller
3625A TRICONEX controller
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
What IO combinations can a mini PLC combine with to achieve automated control?
At present, there are two main design modes for controllers like PLC, one is integrated design and the other is modular design. From the name, we can feel that there are two different PLCs, one that cannot be disassembled and the other that can be disassembled. Due to the fact that the main control module and IO module of the modular PLC can be spliced as needed, its volume and weight are usually very small, and we cannot call it a mini PLC too much. So, what IO combinations can such a small gadget combine with to achieve automation control? Let”s take a brief inventory:3625A TRICONEX controller
1. Firstly, there is the digital quantity acquisition IO module, which is used to collect digital quantity information. Typical examples include counter IO, PNP type digital quantity acquisition IO, NPN type digital quantity acquisition IO, etc.
2. Then there is the digital output IO module, which is used to send digital instructions. The most typical example is PWM output IO, which can output pulse signals to control servo motors or stepper motors for operation.
3. After talking about digital IO, let”s talk about analog IO. Analog signal acquisition type IO includes voltage signal acquisition, current signal acquisition, and temperature signal acquisition. The IO for collecting temperature signals includes PT100, PT1000, and various thermocouple temperature acquisition modules.
4. Finally, there are analog output IO, as well as output current signals and voltage signals.
In addition to the above IO modules, our modular PLC also supports extended communication interfaces, further enhancing the equipment”s scalability.
Module Input/Output (I/O) Knowledge3625A TRICONEX controller
Module Input/Output (I/O) Knowledge
I think it”s necessary to talk about the sorting of the input and output ports of the module. Generally, we can divide it into IO functional division and IO specifications.
The purpose of the former is mainly to convert all functions into actual division into MCU IO ports, while the purpose of the latter is to determine the specifications of all IO ports. Of course, you can completely skip these tasks, and it”s also possible. Depending on the company”s requirements, I think individuals still consider them as a work habit.
The following examples are all created for my blog post. If there are any duplicate names, please do not contact me.
Looking at the above figure, first determine all input and output functions and power input, as well as communication.
Then separate the power distribution with different lines, and start organizing each power supply line and processing process. The final purpose of the entire diagram is to clearly allocate the input and output sequence.
The IO specification is to provide a detailed description of all interfaces, crystal oscillators, and other information to the MCU.
1. Enter the number of low effective interfaces and how much pull-up resistance (switch wet current) is required (how much current does the microcontroller need to absorb, which may be injected into the microcontroller after pull-up).
2. Enter the number of highly effective interfaces, how many pull-down resistors are required (switch wet current), (how much current does the microcontroller need to absorb, and it is possible to inject the microcontroller after the switch is effective)
3. Number of analog input interfaces, evaluate whether the analog ports of the microcontroller are sufficient, and confirm the required analog conversion accuracy. Evaluate whether the A/D conversion reference voltage needs to be replaced (to meet accuracy requirements). Consider how many power supplies need to be tested and how many analog input ports are configured.
4. Evaluate the requirements for crystal oscillator accuracy and whether a phase-locked loop is required.
The above requirements are mainly aimed at module design and need to be confirmed during the early development of the module. All requirements can be organized using an Excel table and displayed in the diagram.
Distributed dual Ethernet IO module
The distributed dual Ethernet IO module adopts an industrial grade design, which meets the demanding industrial application scenarios. It is equipped with a dedicated high-performance Ethernet chip, which can quickly achieve cascade networking between IO modules without the need for repeated wiring, saving on-site wiring costs.
The distributed dual Ethernet IO module comes with switch input, switch output, relay output, analog input, analog input, thermal resistance input, etc. It supports high-speed pulse input counting and high-speed pulse output, and is designed specifically for industrial field data collection, measurement, and control. The distributed dual Ethernet IO module supports Modbus TCP protocol and Modbus RTU protocol for uplink, which can quickly connect to existing DCS, SCADA, PLC, HMI and other systems. The distributed dual Ethernet IO module supports one RS485 interface and supports Modbus RTU Master function. It can expand the IO module, read and write intelligent instrument data, or connect to HMI, DCS, PLC and other devices as a Modbus Slave.
Application Scheme of Industrial Ethernet Remote IO Module in Intelligent Manufacturing Workshop
With the advent of Industry 4.0, intelligent manufacturing has become a trend in industrial production. Intelligent manufacturing requires efficient, stable, and reliable industrial Ethernet remote IO modules to monitor the production process. This article will share an application case of an intelligent manufacturing workshop based on industrial Ethernet remote IO module.3625A TRICONEX controller
The production process of this intelligent manufacturing workshop is mainly divided into two parts: injection molding and automated assembly. The injection molding process requires controlling parameters such as the melting temperature of the melt, the speed and pressure of the injection molding machine. The automated assembly process requires controlling the actions of the assembly robot and detecting the quality of the product. In addition to these production process data, there are also equipment production data such as daily and weekly production in the workshop, as well as equipment status data such as operation, manual, automatic, mold adjustment, and alarm.
In the past, the production process of the factory mainly relied on traditional hard wiring to control the production process, resulting in low work efficiency due to the need for frequent replacement of transmission lines to meet production needs. Moreover, it is very difficult to collect a large number of types of detection and monitoring data for intelligent manufacturing. In order to improve efficiency, production quality, and reliability, the factory has introduced the industrial Ethernet remote IO module MxxT using barium rhenium technology.
The injection molding machine itself comes with MODBUS industrial control bus data or basic status signal output. The barium rhenium technology remote IO module collects data from the device interface RS232/RS485 port, collects status information of the injection molding machine such as startup, operation, and pause, and uploads it to the injection molding machine controller, or wirelessly uploads it to the cloud server. Based on devices, according to the communication protocols and interfaces of different devices, data is obtained by calling their interface channels, and then transmitted to the server.
The remote IO module is connected to the controller of the injection molding machine, and the operation data of the injection molding machine is uploaded and distributed wirelessly, achieving remote monitoring and intelligent control of the injection molding machine. In addition, the remote I/O module supports perceptual access to peripheral devices such as mold temperature machines, cutting machines, and dryers for injection molding machines, providing users with smart factory services.
During the injection molding process, the industrial Ethernet remote IO module transmits real-3625A TRICONEX controllertime data such as temperature, pressure, and speed to the main controller for monitoring and adjustment, ensuring the stability and compliance of production parameters under different conditions. In the automated assembly process, the industrial Ethernet remote IO module collects data through sensors and other devices, and transmits the relevant data to the main controller for adjustment of relevant actions. For example, the industrial Ethernet remote IO module can monitor the actions of assembly robots, detect the accuracy of product assembly and product quality, and ensure the production quality and stability of the product. At the same time, all production data can also be collected and analyzed remotely, helping enterprise managers better monitor production efficiency and quality.
By introducing industrial Ethernet remote IO modules, this intelligent manufacturing workshop not only improves production efficiency and stability, but also reduces labor and energy costs. Because the industrial Ethernet remote IO module can help enterprises complete the collection and monitoring of production data with one click, as well as avoid unnecessary line replacement and the need for workers to enter and exit the production process, thereby reducing costs and improving production efficiency for enterprises.
In summary, the application of industrial Ethernet remote IO modules in intelligent manufacturing workshops not only improves production efficiency and quality, reduces costs, but also achieves intelligent and digital management of production processes, bringing more opportunities and development space for enterprise development.
In addition, this device is widely used for networking and data collection of industrial equipment such as injection molding machines, air compressors, CNC machine tools, on-site PLCs, instruments, sensors, CNC, and electromechanical equipment.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations. In this article, I will focus on digital IO, and in subsequent articles, I will introduce analog IO.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both Di and DO systems, size and heat dissipation issues need to be considered.
Digital input
size
heat
Supports all input types
Type 1, 2, 3, Input
Supports 24 V and 48 V inputs
Robust operating specifications
Wire breakage detection
Digital output
Support for different types of output driver configurations
size
Integrated demagnetization of inductive loads
Heat – When driving multiple outputs
Drive accuracy
diagnosis
For digital input, it is also important to note that it supports different input types, including 1/2/3 type inputs, and in some cases, 24V and 48V inputs. In all cases, reliable operating characteristics are crucial, and sometimes circuit detection is also crucial.
For digital outputs, the system uses different FET configurations to drive the load. The accuracy of the driving current is usually an important consideration. In many cases, diagnosis is also very important.
We will explore how integrated solutions can help address some of these challenges.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used.
Figure 1 shows a typical discrete method for constructing digital input circuits.
Figure 1. Considerations for digital input and output modules.
This type of design is suitable for a certain number of digital inputs; 4 to 8 per board. Beyond this number, this design will soon become impractical. This separation scheme can bring various problems, including:
High power consumption and related board high temperature points.
Each channel requires an optocoupler.
Excessive components can lead to low FIT rate and even require larger devices.
More importantly, the split design method means that the input current increases linearly with the input voltage. Assuming a 2.2K Ω input resistor and 24V V is used. When the input is 1, for example, at 24V, the input current is 11mA, which is equivalent to a power consumption of 264mW. The power consumption of the 8-channel module is greater than 2W, and the power consumption of the 32-bit module is greater than 8W. Refer to Figure 3 below
From a cooling perspective alone, this split design cannot support multiple channels on a single board.
One of the biggest advantages of integrated digital input design is the significant reduction in power consumption, thereby reducing heat dissipation. Most integrated digital input devices allow configurable input current limitations to significantly reduce power consumption.
When the current limiting value is set to 2.6mA, the power consumption is significantly reduced, with each channel approximately 60mW. The rated value of the 8-channel digital input module can now be set below 0.5
Another reason for opposing the use of split logic design is that sometimes DI modules must support different types of inputs. The standard 24V digital input specifications published by IEC are divided into Type 1, Type 2, and Type 3. Type 1 and Type 3 are usually used in combination because their current and threshold limits are very similar. Type 2 has a current limit of 6mA, which is higher. When using the split method, it may be necessary to redesign as most discrete values need to be updated.
However, integrated digital input products typically support all three types. Essentially, Type 1 and Type 3 are generally supported by integrated digital input devices. However, in order to meet the minimum current requirement of 6mA for Type 2 input, we need to use two channels in parallel for one field input. And only adjust the current limiting resistance. This requires a circuit board change, but the change is minimal.
What are the advantages of Ethernet remote IO modules that can be cascaded?
Advantages and specific application scenarios of Ethernet remote IO modules that can be cascaded
For scenarios where data collection control points are linearly distributed, such as streetlights, bridges, streetlights, digital factories, parking lot parking monitoring, smart parking lots, smart parking racks, and building automation control systems in smart parks, using cascading dual Ethernet remote IO modules saves more costs than using single Ethernet remote IO modules.
The Ethernet remote IO module that can be cascaded is a new type of Ethernet remote IO module that supports MAC layer data exchange and can achieve hand in hand connection. This not only saves switch interfaces, but also reduces a large amount of Ethernet cable costs, wiring space, and wiring costs.
Its advantages are as follows:3625A TRICONEX controller
1. No need for a large number of Ethernet switches or occupying Ethernet switch ports;
2. It can save a lot of Ethernet cables, cable space, and labor costs for installing cables;
3. The overall cost has significantly decreased;
4. Supports both Modbus RTU protocol, Modbus TCP protocol, and the Internet of Things protocol MQTT protocol;
5. Support TCP Server and TCP Client services;3625A TRICONEX controller
6. Can be connected to SCADA systems, PLC systems, or cloud platforms;
7. The series uses a MAC layer for data exchange, ensuring that network connectivity does not cause communication issues with subsequent devices due to device failures in the middle.
The comparison between cascaded Ethernet remote IO modules and traditional IO modules used in building automation systems is shown in the following figure:
1. Adopting a cascaded dual Ethernet remote IO module, data acquisition and control wiring for floors with a height of 70 meters only requires a 70 meter Ethernet cable;
2. Using a traditional single Ethernet remote IO module, the data acquisition and control system wiring for a 70 meter high floor requires a 280 meter Ethernet cable.
It can be seen that using cascaded dual Ethernet remote IO modules can save a lot of wiring costs compared to traditional single Ethernet remote IO modules.
Application of Ethernet Remote IO Module in Building Automation System
For building automation systems, each data acquisition control point is linearly distributed in each floor. Therefore, it is very suitable to use Ethernet remote IO modules that can be cascaded to achieve data acquisition and control.
The Ethernet remote IO module that can be cascaded supports MAC layer data exchange and can achieve a hand in hand connection method. This can not only save switch interfaces, but also reduce a large amount of Ethernet cable costs, wiring space, and wiring costs.
Its advantages are as follows:
1. No need for a large number of Ethernet switches or occupying Ethernet switch ports;
2. It can save a lot of Ethernet cables, cable space, and labor costs for installing cables;
3. The overall cost has significantly decreased;
4. The M160E supports both Modbus RTU protocol, Modbus TCP protocol, and the Internet of Things protocol MQTT protocol. In addition, it also supports TCP Server and TCP Client services; Can be connected to SCADA systems, PLC systems, or cloud platforms;
4. The M160E series uses a MAC layer for data exchange, ensuring that network connectivity does not cause communication issues with subsequent devices due to device failures in the middle.
Comparison between cascaded Ethernet remote IO modules and traditional IO modules for building automation systems:
1. Adopting a cascaded dual Ethernet remote IO module, data acquisition and control wiring for floors with a height of 70 meters only requires a 70 meter Ethernet cable;
2. Using a traditional single Ethernet remote IO module, the data acquisition and control system wiring for a 70 meter high floor requires a 280 meter Ethernet cable.
Therefore, we can conclude that for scenarios where data collection control points are linearly distributed, such as streetlights, bridges, streetlights, digital factories, parking lot parking monitoring, smart parking lots, smart parking racks, and building automation systems in smart parks, using cascading dual Ethernet remote IO modules saves more costs than using single Ethernet remote IO modules.

128718-01 Mechanical protection system
3500/64M 140734-05 Transient Data Interface Card
3500/64M 140734-05 Mechanical protection system
3300/46 Transient Data Interface Card
18745-03 Framework interface module
3500/94 Framework interface module
3500/93-02-02-02-00 BENTLY NEVADA
3500/05-01-03-00-00-00 Mechanical protection system
3500/40M 140734-01 Framework interface module
3300/65 BENTLY NEVADA
3500/50-01-00-02 Mechanical protection system
3300/20 BENTLY NEVADA
330878-90-00 Transient Data Interface Card
3500/33-01-00 Mechanical protection system
330130-080-00-00 Framework interface module
288055-01 Framework interface module
3500/64 Transient Data Interface Card
3500/22M-01-01-00 Mechanical protection system
3300/45 Framework interface module
3500/05-02-05-00-00-01 BENTLY NEVADA
1900/27 BENTLY NEVADA
330850-51-CN Framework interface module
3300/15 BENTLY NEVADA
3500/05-01-02-00-01 Transient Data Interface Card
3500/05-01-02-00-01 Framework interface module
3500/92-04-01-00 Mechanical protection system
3300/10-02-02-00 Transient Data Interface Card
330130-080-00-00 BENTLY NEVADA
172109-01 BENTLY NEVADA
163179-03 Mechanical protection system
584390 Framework interface module
BENTLY/NEVADA 330400-01-05 Framework interface module
135813-01 Framework interface module
330850-51-CN Mechanical protection system
3300/40 Framework interface module
190662-26 Transient Data Interface Card
330906-02-12-10-02-00 Framework interface module
330850-50-05 Mechanical protection system
3300/20-12-01-01-00-00 Mechanical protection system
3500/46M BENTLY NEVADA
3500/45 176449-04 Mechanical protection system
330709-000-070-10-02-00 Framework interface module
PWB78434-01 Transient Data Interface Card
133819-02 Mechanical protection system
3500/92 Transient Data Interface Card
136711-02 Mechanical protection system
128275-01-E Transient Data Interface Card
3500/33-01-01 Framework interface module
3500/32 Transient Data Interface Card
3500/32-A01-B01 BENTLY NEVADA
3500/53-03-00 Transient Data Interface Card
3500/92 136180-01 Mechanical protection system
125840-01 Framework interface module
140471-01 Mechanical protection system
3500/25 Mechanical protection system
3500/40-01-00 Mechanical protection system
128229-01 Mechanical protection system
3500/42 BENTLY NEVADA
3500/93 135785-01 Transient Data Interface Card
3300/20-12-01-03-00-00 Mechanical protection system
149369-01 Framework interface module
330730-040-00-00 Framework interface module
3500/15E Mechanical protection system
3500/61 163179-02 BENTLY NEVADA
133396-01 Transient Data Interface Card
3500/20 Mechanical protection system
330180-91-00 Mechanical protection system
330180-51-05 Transient Data Interface Card
330180-51-00 Mechanical protection system
133434-01 Mechanical protection system
135613-02 Transient Data Interface Card
1900/65A-00-04-01-00-00 Framework interface module
3500/53-01-00 Mechanical protection system
330851-02-000-070-50-00-05 Framework interface module
130539-30 Framework interface module
3500/25-A01-B01-C00 BENTLY NEVADA
1900/65A-01-00-01-00-00 Transient Data Interface Card
136188-02 Framework interface module
114M5330-01 Transient Data Interface Card
330851-02-000-040-10-01-CN Transient Data Interface Card
3500/40M BENTLY NEVADA
3300/48 BENTLY NEVADA
3500/25-01-05-00 Mechanical protection system
330901-00-40-05-02-05 Mechanical protection system
136719-01 Transient Data Interface Card
584390 Mechanical protection system
81545-01 BENTLY NEVADA
330902-00-40-10-02-00 BENTLY NEVADA
3500/32-01-00 Mechanical protection system
3500/93 135785-02 Framework interface module
177313-02-02 Transient Data Interface Card
3500/94 Transient Data Interface Card
1900/55 Framework interface module
330108-91-05 Mechanical protection system
3300/20-12-01-01-00-00 Transient Data Interface Card
3500/64M Mechanical protection system
35003500/42 140734-02H Framework interface module
3500/01 129133-01 Framework interface module
3500/50-04-00 Framework interface module
1900/65A-00-00-02-00-01 BENTLY NEVADA
3500/15 133292-01 Transient Data Interface Card
128276-011 BENTLY NEVADA
3500/50-01-00-00 Transient Data Interface Card
3500/22M 138607-02 Mechanical protection system
125680-01 BENTLY NEVADA
3500/15 106M1079-01 Mechanical protection system
3500/40M 176449-01 Mechanical protection system
3500/15E Framework interface module
3500/92-02-01-00 BENTLY NEVADA
3500/22M BENTLY BENTLY NEVADA
130539-30 Mechanical protection system
3300/03-01-00 BENTLY NEVADA
330703-000-050-10-11-00 Framework interface module
330130-045-00-00 BENTLY NEVADA
136188-02 BENTLY NEVADA
3500/15-01-01-00 Mechanical protection system
3500/25-01-01 BENTLY NEVADA
3500/50-01-00-00 Framework interface module
3500/22M-01-01-00 BENTLY NEVADA
3500/65 BENTLY NEVADA
3300/47 Framework interface module
3500/93 135799-01 Framework interface module
330850-50-00 Mechanical protection system
3500-92-02-01-00 Framework interface module
126648-01 Transient Data Interface Card
177897-01 Transient Data Interface Card
3500/40M 176449-01 Framework interface module
3300/03-01-00 Mechanical protection system
330104-00-05-10-02-CN Mechanical protection system
3300/20-05-03-01-00-00 Transient Data Interface Card
3500/45 176449-04 Transient Data Interface Card
3500/95 BENTLY NEVADA
177896-01 Framework interface module
3500/42M-01-00 BENTLY NEVADA
3300/16 Transient Data Interface Card
3500/45 176449-04 Framework interface module

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts