Description
8111 Safety Instrumented System (SIS)
8111 Safety Instrumented System (SIS)
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
Definition of IO Link Protocol and Its Interface
IO Link is a peer-to-peer, serial digital communication protocol designed for periodic data exchange between sensors/actuators and controllers (PLCs). The IO Link protocol was first proposed by Siemens and has now become an international standard IEC 61131-9. With the advancement of Industry 4.0, the use of IO Link is becoming increasingly widespread. Today”s article will introduce the definition of the IO Link protocol and its interfaces.
Factory automation can be divided into execution layer, on-site layer, on-site control layer, workshop control layer, and management layer according to functional division. As shown in the following figure:
The execution layer includes various execution mechanisms (valves, pumps, motors, etc.) and sensors, which are the muscles and peripheral nerves of factory automation. They receive commands from the upper layer and complete specified actions.
The on-8111 Safety Instrumented System (SIS) site layer includes various distributed IO8111 Safety Instrumented System (SIS) systems, which are the central nervous system of factory automation. It conveys control instructions from the upper layer to the execution layer; And feedback the signals from the execution layer to the control layer, serving as the information center;
The on-site control layer includes various PLC systems, which are the brains of factory automation. It issues corresponding instructions and commands the execution layer to complete corresponding actions based on internal program requirements and signal feedback from the execution layer;
The workshop control layer (MES) and management layer communicate with various PLC systems at the management level to complete management tasks at the workshop and factory levels.
The IO Link protocol to be introduced in this article is a protocol that transfers data between the execution layer and the field layer. An IO Link system consists of the following components:
1) IO Link Master;
2) IO Link Device;
3) Non shielded 3-5 core standard cable;
4) Tools for configuring IO Link parameters;
The IO Link Master transfers data between the IO Link device and the PLC. It is usually a distributed IO module with IO Link connection channels on the module. The IO Link Device is connected to the channel of the IO Link Master through a cable, and the IO Link Master exchanges data with the PLC through a bus. As shown in the following figure:
Every IO Link device needs to be connected to a channel of the IO Link supervisor, so IO Link is a peer-to-peer communication protocol, not a bus protocol.
IO Link devices are divided into two types: sensors and actuators: sensors are usually the four pin interface of M12, and actuators are usually the five pin interface of M12.
According to IEC 60974-5-2, the definition of IO Link Device pins follows the following regulations:
1) Pin 1 (PIN1): 24V power supply positive pole;
2) Pin 3 (PIN3): 0V
3) Pin 4 (PIN4): IO Link communication or standard IO output;
The pin definition of the IO Link device is shown in the following figure:
Which types of equipment should PLC module manufacturers develop first?
We know that PLC, also known as programmable logic controller, collects variable data through various IOs to achieve the purpose of automated control. Therefore, developing PLC is largely about developing IO. However, with so many types of IO, which PLC module manufacturers should develop first? Let me share my opinion:
1. Digital input IO, including PNP and NPN digital input IO, counter input IO, etc.
2. Digital output IO, including PNP and NPN digital output IO, PWM pulse output IO, relay output IO, and so on.
3. Analog input IO, including current acquisition input IO, voltage acquisition input IO, temperature acquisition input IO, and so on. The current input IO can collect currents ranging from 0 to 20 milliamperes, while the voltage input IO can collect voltages ranging from negative 10V to positive 10V. Temperature acquisition IO includes thermocouples and thermal resistors.
4. The style of analog output IO is similar to that of analog input IO, but does not include temperature analog, mainly voltage and current type.
Application Scheme of Industrial Ethernet Remote IO Module in Intelligent Manufacturing Workshop
With the advent of Industry 4.0, intelligent manufacturing has become a trend in industrial production. Intelligent manufacturing requires efficient, stable, and reliable industrial Ethernet remote IO modules to monitor the production process. This article will share an application case of an intelligent manufacturing workshop based on industrial Ethernet remote IO module.8111 Safety Instrumented System (SIS)
The production process of this intelligent manufacturing workshop is mainly divided into two parts: injection molding and automated assembly. The injection molding process requires controlling parameters such as the melting temperature of the melt, the speed and pressure of the injection molding machine. The automated assembly process requires controlling the actions of the assembly robot and detecting the quality of the product. In addition to these production process data, there are also equipment production data such as daily and weekly production in the workshop, as well as equipment status data such as operation, manual, automatic, mold adjustment, and alarm.
In the past, the production process of the factory mainly relied on traditional hard wiring to control the production process, resulting in low work efficiency due to the need for frequent replacement of transmission lines to meet production needs. Moreover, it is very difficult to collect a large number of types of detection and monitoring data for intelligent manufacturing. In order to improve efficiency, production quality, and reliability, the factory has introduced the industrial Ethernet remote IO module MxxT using barium rhenium technology.
The injection molding machine itself comes with MODBUS industrial control bus data or basic status signal output. The barium rhenium technology remote IO module collects data from the device interface RS232/RS485 port, collects status information of the injection molding machine such as startup, operation, and pause, and uploads it to the injection molding machine controller, or wirelessly uploads it to the cloud server. Based on devices, according to the communication protocols and interfaces of different devices, data is obtained by calling their interface channels, and then transmitted to the server.
The remote IO module is connected to the controller of the injection molding machine, and the operation data of the injection molding machine is uploaded and distributed wirelessly, achieving remote monitoring and intelligent control of the injection molding machine. In addition, the remote I/O module supports perceptual access to peripheral devices such as mold temperature machines, cutting machines, and dryers for injection molding machines, providing users with smart factory services.
During the injection molding process, the industrial Ethernet remote IO module transmits real-8111 Safety Instrumented System (SIS)time data such as temperature, pressure, and speed to the main controller for monitoring and adjustment, ensuring the stability and compliance of production parameters under different conditions. In the automated assembly process, the industrial Ethernet remote IO module collects data through sensors and other devices, and transmits the relevant data to the main controller for adjustment of relevant actions. For example, the industrial Ethernet remote IO module can monitor the actions of assembly robots, detect the accuracy of product assembly and product quality, and ensure the production quality and stability of the product. At the same time, all production data can also be collected and analyzed remotely, helping enterprise managers better monitor production efficiency and quality.
By introducing industrial Ethernet remote IO modules, this intelligent manufacturing workshop not only improves production efficiency and stability, but also reduces labor and energy costs. Because the industrial Ethernet remote IO module can help enterprises complete the collection and monitoring of production data with one click, as well as avoid unnecessary line replacement and the need for workers to enter and exit the production process, thereby reducing costs and improving production efficiency for enterprises.
In summary, the application of industrial Ethernet remote IO modules in intelligent manufacturing workshops not only improves production efficiency and quality, reduces costs, but also achieves intelligent and digital management of production processes, bringing more opportunities and development space for enterprise development.
In addition, this device is widely used for networking and data collection of industrial equipment such as injection molding machines, air compressors, CNC machine tools, on-site PLCs, instruments, sensors, CNC, and electromechanical equipment.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations. In this article, I will focus on digital IO, and in subsequent articles, I will introduce analog IO.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both Di and DO systems, size and heat dissipation issues need to be considered.
Digital input
size
heat
Supports all input types
Type 1, 2, 3, Input
Supports 24 V and 48 V inputs
Robust operating specifications
Wire breakage detection
Digital output
Support for different types of output driver configurations
size
Integrated demagnetization of inductive loads
Heat – When driving multiple outputs
Drive accuracy
diagnosis
For digital input, it is also important to note that it supports different input types, including 1/2/3 type inputs, and in some cases, 24V and 48V inputs. In all cases, reliable operating characteristics are crucial, and sometimes circuit detection is also crucial.
For digital outputs, the system uses different FET configurations to drive the load. The accuracy of the driving current is usually an important consideration. In many cases, diagnosis is also very important.
We will explore how integrated solutions can help address some of these challenges.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used.
Figure 1 shows a typical discrete method for constructing digital input circuits.
Figure 1. Considerations for digital input and output modules.
This type of design is suitable for a certain number of digital inputs; 4 to 8 per board. Beyond this number, this design will soon become impractical. This separation scheme can bring various problems, including:
High power consumption and related board high temperature points.
Each channel requires an optocoupler.
Excessive components can lead to low FIT rate and even require larger devices.
More importantly, the split design method means that the input current increases linearly with the input voltage. Assuming a 2.2K Ω input resistor and 24V V is used. When the input is 1, for example, at 24V, the input current is 11mA, which is equivalent to a power consumption of 264mW. The power consumption of the 8-channel module is greater than 2W, and the power consumption of the 32-bit module is greater than 8W. Refer to Figure 3 below
From a cooling perspective alone, this split design cannot support multiple channels on a single board.
One of the biggest advantages of integrated digital input design is the significant reduction in power consumption, thereby reducing heat dissipation. Most integrated digital input devices allow configurable input current limitations to significantly reduce power consumption.
When the current limiting value is set to 2.6mA, the power consumption is significantly reduced, with each channel approximately 60mW. The rated value of the 8-channel digital input module can now be set below 0.5
Another reason for opposing the use of split logic design is that sometimes DI modules must support different types of inputs. The standard 24V digital input specifications published by IEC are divided into Type 1, Type 2, and Type 3. Type 1 and Type 3 are usually used in combination because their current and threshold limits are very similar. Type 2 has a current limit of 6mA, which is higher. When using the split method, it may be necessary to redesign as most discrete values need to be updated.
However, integrated digital input products typically support all three types. Essentially, Type 1 and Type 3 are generally supported by integrated digital input devices. However, in order to meet the minimum current requirement of 6mA for Type 2 input, we need to use two channels in parallel for one field input. And only adjust the current limiting resistance. This requires a circuit board change, but the change is minimal.
What is the function of an IO chip
Io generally refers to input and output devices, where I is the input and O is the output. The input to the IO port of the chip is the external signal transmission to the chip, while the output is the internal signal transmission to other devices. The input and output are relative. In short, in a broad sense, the control of input and output interfaces is called an IO chip, and network cards are also considered IO or array cards.
The CPU must read and write data to external registers or ROMs on RAM or other hardware through IO commands (such as input/output commands). For example, reading a keyboard involves accessing external registers on the keyboard through the 60H port, and the chip on the keyboard scans the keyboard. Pressing or holding down a key for a long time will cause the chip to generate corresponding scan or break codes, which will be written to the external register of the 60H port, so that the CPU can achieve the purpose of controlling the keyboard. Therefore, I think IO chips should refer to a large category. The CPU already has powerful IO instructions and corresponding control buses.
51 microcontroller IO port input and output mode_ Four usage methods for IO ports
The traditional 51 microcontroller IO interface can only be used as a standard bidirectional IO interface. If it is used to drive LED, it can only be driven by injecting current or using a transistor external expansion drive circuit.
Current injection method: LED positive pole connected to VCC, negative pole connected to IO port. If the IO is at a high level, the two poles of the LED are at the same level, and there is no current, the LED will turn off; IO is at low power level, current flows from VCC to IO, and LED lights up. But when you connect the positive pole of the LED to the IO interface and the negative pole to GND, placing the IO interface at a high level will cause the LED to light up. However, due to the insufficient pull-up capability of the IO interface, the brightness is not ideal. The following method can be used to solve this problem.
Push-pull working mode: The positive and negative poles of the LED are connected to two IO ports, and then the positive IO interface is set as the push-pull output, while the negative IO interface is set as the standard bidirectional current input. The push pull method has strong pull-up ability and can achieve high-level LED driving.
Four usage methods for IO ports8111 Safety Instrumented System (SIS)
From the perspective of the characteristics of the I/O port, the P0 port of Standard 51 is an open drain structure when used as an I/O port, and in practical applications, a pull-up resistor is usually added; P1, P2, and P3 are all quasi bidirectional I/Os with internal pull-up resistors, which can be used as both input and output. The I/O port characteristics of the LPC900 series microcontroller have certain differences, and they can be configured into four different working modes: quasi bidirectional I/O, push pull output, high resistance input, and open drain.
Compared with Standard 51, the quasi bidirectional I/O mode differs in internal structure but is similar in usage. For example, when used as an input, it must first write “1” to set it to high level before reading the level state of the pin.!!!!! Why is it like this? Please refer to the diagram below for analysis.
The characteristic of push-8111 Safety Instrumented System (SIS)pull output is that it can drive a large current regardless of whether it outputs high or low levels. For example, when outputting high levels, it can directly light up the LED (by connecting several hundred ohm current limiting resistors in series), which is difficult to achieve in quasi bidirectional I/O mode.
The characteristic of high impedance input mode is that it can only be used as an input, but it can obtain relatively high input impedance, which is necessary in analog comparator and ADC applications.
The open drain mode is similar to the quasi bidirectional mode, but there is no internal pull-up resistance. The advantage of open drain mode is good electrical compatibility. If the external pull-up resistor is connected to a 3V power supply, it can interface with a 3V logic device. If the pull-up resistor is connected to a 5V power supply, it can also interface with a 5V logic device. In addition, the open drain mode can also conveniently implement the “line and” logic function.
For the explanation of the above question, there is this information:
High resistance state is a common term in digital circuits, referring to an output state of a circuit that is neither high nor low. If the high resistance state is input into the next level circuit, it has no impact on the lower level circuit, just like not connected. If measured with a multimeter, it may be high or low, depending on what is connected afterwards.
High resistance states can be understood as open circuits during circuit analysis. You can think of it as having a very high output (input) resistance. His limit can be considered suspended.
Typical applications of high resistance states:
1. On the bus connected structure. There are multiple devices hanging on the bus, and the devices are connected to the bus in a high impedance form. This automatically releases the bus when the device does not occupy it, making it easier for other devices to gain access to the bus.
2. Most microcontroller I/O can be set to high impedance input when used, such as Lingyang, AVR, and so on. High resistance input can be considered as having infinite input resistance, indicating that I/O has minimal impact on the preceding stage and does not generate current (without attenuation), and to some extent, it also increases the chip”s resistance to voltage surges.
Safety Instrumented System (SIS) is a8111 Safety Instrumented System (SIS) safety system used to monitor and control production processes, and is a system that prevents catastrophic accidents from occurring. SIS is usually composed of sensors, logic solvers, and actuators, which can monitor and control various industrial production processes, including petrochemical, power, metallurgy, pharmaceuticals, pulp, and paper industries. The main function of SIS is to ensure the safety and reliability of industrial processes to prevent accidents from occurring. It can determine whether there are potential hazards or accident risks by monitoring the status of equipment, process parameters, and environmental factors, and take appropriate measures in a timely manner to prevent accidents from occurring. SIS can also be integrated with other control systems such as DCS or PLC to achieve more efficient production process monitoring and management.8111 Safety Instrumented System (SIS)
Invensys is an industrial software and control systems company headquartered in the UK, established in 1987. The company provides a range of solutions, including process automation, factory automation, energy management, railway transportation, aerospace, defense, and automotive fields. Invensys has over 30000 employees worldwide and customers worldwide. In 2019, Invensys was acquired by Schneider Electric of France.
Connex is a provider of industrial automation and information solutions headquartered in the United States, established in 2000. The company mainly provides data collection, monitoring, and visualization solutions, as well as industrial network and communication solutions. Kangjisen has over 2000 employees worldwide and customers worldwide. In China, Kangjisen is fully responsible by Beijing Kangjisen Huagen Technology Co., Ltd., providing sales, technical support, engineering, training, and a series of engineering and technical services.
The MXXE series remote IO module is designed at an industrial level, suitable for industrial IoT and automation control systems. The MXXE industrial Ethernet remote I/O is equipped with two Ethernet ports for MAC layer data exchange chips, allowing data to flow down from the expandable daisy chain Ethernet remote I/O array to another local Ethernet device or up to the server.
Factory automation, security, and monitoring systems, as well as tunnel communication applications, can utilize daisy chain Ethernet to build multi-point I/O networks through standard Ethernet cables. Many industrial automation users are familiar with the most commonly used multipoint configurations in fieldbus solutions. The daisy chain function of MxxXE remote I/O not only improves the scalability and installation possibility of remote I/O applications, but also reduces the overall cost by reducing the need for individual Ethernet switches. This daisy chain equipment installation method will also reduce overall labor and wiring costs.
The difference between Ethernet remote IO module and industrial computer IO board card
The application of Ethernet remote IO module is very extensive, mainly used for distributed data collection and control, especially suitable for situations where data points are scattered and control points are scattered.
The traditional approach is to connect various instrument signals directly to the IO card through cables using an industrial computer and an IO board card. This method has high wiring costs and high signal attenuation.
The Ethernet remote IO module can directly connect the IO module to the PLC or industrial control computer, and connect the IO to the PLC or industrial control computer through an Ethernet cable. Various instrument controller signals can be directly connected to the Ethernet IO module nearby, which has several advantages:
1. It saves industrial control computers and IO boards, and Ethernet IO modules can be directly connected to the upper computer system;
2. Replacing 4-20mA signal transmission with 10/100MHz Ethernet transmission has improved transmission speed;
3. Replacing various instrument controller signal lines with an Ethernet cable reduces the attenuation of remote signal transmission;
4. The signal cable of the instrument controller only needs to be connected to the Ethernet IO module, greatly reducing cable costs and wiring workload;
5. The M160T series Ethernet remote IO module can also be directly transmitted to the Internet of Things platform through MQTT for remote monitoring.
The profinet to Modubs distributed remote IO module has now been applied in many fields, and Huajie Intelligent Control has implemented profinet remote IO modules that support Siemens 200smart, 3001200, and 1500.
Huajie Intelligent Control distributed IO supports Modubs 16D 16DO 32DI 32 DO, with flexible on-site installation, which can be installed nearby with sensors and actuators, saving wiring and PLC”s own IO points. Provides high-speed data transmission, enabling reliable communication between the controller CPU and I/O system
The advantage of using profinet distributed remote IO module in profinet is that the wiring is simple, only one network cable is needed, and each point is collected and controlled through the remote IO module. The program is controlled by Siemens 1200 or 1500, which not only reduces wiring work but also reduces wire costs
Huajie Intelligent Control has good compatibility with distributed IO and has expanded other bus based distributed IO systems, which can also help you more rationalize the management of your distributed remote devices and achieve unlimited expansion. The supporting software can assist with configuration, debugging, and diagnosis of your system. There are multiple series of models available, including HJ3204 to HJ3209, with stable performance and affordable prices, Provide maximum convenience for enterprise engineering.
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts