Description
9761-210 TRICONEX nput/output communication card
9761-210 TRICONEX nput/output communication card
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
Definition of IO Link Protocol and Its Interface
IO Link is a peer-to-peer, serial digital communication protocol designed for periodic data exchange between sensors/actuators and controllers (PLCs). The IO Link protocol was first proposed by Siemens and has now become an international standard IEC 61131-9. With the advancement of Industry 4.0, the use of IO Link is becoming increasingly widespread. Today”s article will introduce the definition of the IO Link protocol and its interfaces.
Factory automation can be divided into execution layer, on-site layer, on-site control layer, workshop control layer, and management layer according to functional division. As shown in the following figure:
The execution layer includes various execution mechanisms (valves, pumps, motors, etc.) and sensors, which are the muscles and peripheral nerves of factory automation. They receive commands from the upper layer and complete specified actions.
The on-9761-210 TRICONEX nput/output communication card site layer includes various distributed IO9761-210 TRICONEX nput/output communication card systems, which are the central nervous system of factory automation. It conveys control instructions from the upper layer to the execution layer; And feedback the signals from the execution layer to the control layer, serving as the information center;
The on-site control layer includes various PLC systems, which are the brains of factory automation. It issues corresponding instructions and commands the execution layer to complete corresponding actions based on internal program requirements and signal feedback from the execution layer;
The workshop control layer (MES) and management layer communicate with various PLC systems at the management level to complete management tasks at the workshop and factory levels.
The IO Link protocol to be introduced in this article is a protocol that transfers data between the execution layer and the field layer. An IO Link system consists of the following components:
1) IO Link Master;
2) IO Link Device;
3) Non shielded 3-5 core standard cable;
4) Tools for configuring IO Link parameters;
The IO Link Master transfers data between the IO Link device and the PLC. It is usually a distributed IO module with IO Link connection channels on the module. The IO Link Device is connected to the channel of the IO Link Master through a cable, and the IO Link Master exchanges data with the PLC through a bus. As shown in the following figure:
Every IO Link device needs to be connected to a channel of the IO Link supervisor, so IO Link is a peer-to-peer communication protocol, not a bus protocol.
IO Link devices are divided into two types: sensors and actuators: sensors are usually the four pin interface of M12, and actuators are usually the five pin interface of M12.
According to IEC 60974-5-2, the definition of IO Link Device pins follows the following regulations:
1) Pin 1 (PIN1): 24V power supply positive pole;
2) Pin 3 (PIN3): 0V
3) Pin 4 (PIN4): IO Link communication or standard IO output;
The pin definition of the IO Link device is shown in the following figure:
Which types of equipment should PLC module manufacturers develop first?
We know that PLC, also known as programmable logic controller, collects variable data through various IOs to achieve the purpose of automated control. Therefore, developing PLC is largely about developing IO. However, with so many types of IO, which PLC module manufacturers should develop first? Let me share my opinion:
1. Digital input IO, including PNP and NPN digital input IO, counter input IO, etc.
2. Digital output IO, including PNP and NPN digital output IO, PWM pulse output IO, relay output IO, and so on.
3. Analog input IO, including current acquisition input IO, voltage acquisition input IO, temperature acquisition input IO, and so on. The current input IO can collect currents ranging from 0 to 20 milliamperes, while the voltage input IO can collect voltages ranging from negative 10V to positive 10V. Temperature acquisition IO includes thermocouples and thermal resistors.
4. The style of analog output IO is similar to that of analog input IO, but does not include temperature analog, mainly voltage and current type.
What is the difference between remote IO and distributed IO
People often discuss the difference between remote IO and distributed IO. However, some people believe that they are the same and terms can be exchanged, while others believe the opposite. What is the difference between remote I/O and distributed I/O? The following is a guide from remote IO manufacturer Zhongshan Technology to understand the difference between remote IO and distributed IO.
Remote and distributed within the location range.9761-210 TRICONEX nput/output communication card
Today”s DCS is a control system with many distributed autonomous controllers, each with many continuous operations. This controller is bundled together by a central monitoring controller. We have used the terms remote and distributed in the locations of I/O and controllers. It is easy to see how these terms are misunderstood.
From the perspective of PLC, remote I/O represents the actual distance that the I/O module is away from the control PLC. Distributed I/O is very intelligent, as mentioned earlier, remote I/O is sometimes referred to as distributed I/O. Let”s take a look at the definition of distributed I/O. This definition is different from remote I/O.
Generally speaking, distributed I/O has a brain or some computing power. By default, it is remote. As mentioned earlier, remote I/O is located physically far from the control PLC. Remote I/O has no brain and cannot perform any computational functions at all. It can be said with certainty that when you hear the term remote I/O, it only involves one controller or PLC, while distributed I/O has multiple controllers.
ZSR-Ethernet-2184 is a distributed Ethernet RTU that supports 4-way switch digital input (Di), 8-way analog input (Ai), 4-way relay (Do) output, 1-way RS485 serial port data acquisition to Ethernet, and Modbus RTU terminal. Merge 485 to Ethernet serial port server function, support Modbus to TCP/UDP protocol conversion, support virtual serial port, and interface with various configuration software. Supports signal acquisition in the range of 0-5V, 0-10V, 0-30V, or 0-20ma, 4-20ma, with built-in software and hardware watchdog, industrial grade components, and stable operation in an industrial environment of -40~85 ° C.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.9761-210 TRICONEX nput/output communication card
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both DI and DO systems, size and heat dissipation issues need to be considered.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used
For example, the current limiting value of DI devices in ADI is 3.5mA/channel. So, as shown in the figure, we use two channels in parallel. If the system must be connected to a Type 2 input, adjust the REFDI resistance and RIN resistance. For some newer components, we can also use pins or select current values through software.
To support a 48V digital input signal (not a common requirement), a similar process needs to be used, and an external resistor must be added to adjust the voltage threshold at one end of the field. Set the value of this external resistor so that the current limiting value * R+threshold of the pin meets the voltage threshold specification at one end of the field (see device data manual).
Finally, due to the connection between the digital input module and the sensor, the design must meet the requirements of reliable operating characteristics. When using a split type scheme, these protective functions must be carefully designed. When selecting integrated digital input devices, ensure that the following are determined according to industry standards:
Wide input voltage range (e.g. up to 40V).
Able to use on-site power supply (7V to 65V).
Capable of withstanding high ESD (± 15kV ESD air gap) and surges (usually 1KV).
Providing overvoltage and overheating diagnosis is also very useful for MCU to take appropriate actions.
Design a High Channel Density Digital Output Module
A typical discrete digital output design has a FET with a driving circuit driven by a microcontroller. Different methods can be used to configure FETs to drive microcontrollers.
The definition of a high-end load switch is that it is controlled by an external enable signal and connects or disconnects the power supply from a given load. Compared to low-end load switches, high-end switches provide current to the load, while low-end switches connect or disconnect the grounding connection of the load to obtain current from the load. Although they all use a single FET, the problem with low-end switches is that there may be a short circuit between the load and ground. High end switches protect the load and prevent short circuits to ground. However, the implementation cost of low-end switches is lower. Sometimes, the output driver is also configured as a push-pull switch, requiring two MOSFETs. Refer to Figure 4 below.
Integrated DO devices can integrate multiple DO channels into a single device. Due to the different FET configurations used for high-end, low-end, and push-pull switches, different devices can be used to achieve each type of output driver.
TRICONEX 3805E Invensys can accommodate the backplane of previous modules
TRICONEX 3805E Invensys can accommodate the backplane of previous modules
Fault tolerance in the TRICONEX 3805E is achieved through the the third mock examination redundancy (TMR) architecture. Tricon can provide error free and uninterrupted control in the event of hard faults or internal or external transient faults in components. Tricon adopts a completely triple architecture design, from the input module to the main processor and then to the output module. Each I/O module contains three independent branch circuits. Each pin on the input module reads process data and passes this information to their respective main processors. The three main processors communicate with each other using a proprietary high-speed bus system called TriBus. Every scan, the three main processors synchronize and communicate with their two neighbors through TriBus. Tricon votes on digital input data, compares output data, and sends copies of analog input data to each main processor. The main processor executes user written applications and sends the output generated by the application to the output module. In addition to voting on input data, TriBus also votes on output data. This is done on the output module as close to the field as possible to detect and compensate for any errors between the Tricon voting and the final output driven to the field.
The TRICONEX 3805E system typically consists of the following typical modules: [2]
Main processor modules (three).9761-210 TRICONEX nput/output communication card
Communication module.
Input and output modules: can be analog and/or digital, can work independently, or can be hot backup (backup).
Power module (redundant).9761-210 TRICONEX nput/output communication card
A backplane (chassis) that can accommodate previous modules.
System cabinet: One or more chassis can be compressed into one cabinet.
Organize cabinets to adapt and standardize interface connections between on-site instruments and Triconex system cabinets.
Human Machine Interface (HMI) for monitoring events.
Engineering Workstation (EWS) for programming. Monitoring, troubleshooting, and updating.
The remote IO module is designed according to the demanding industrial application environment requirements, embedded with a 32-bit high-performance microprocessor MCU, to meet various combinations of digital, analog, and thermal resistance IO modules. The communication protocol of the remote IO module adopts the standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. The remote IO module supports a wide working voltage of DC9-36V and has anti reverse protection function. It is equipped with a built-in watchdog and comprehensive lightning protection and anti-interference measures to ensure reliability.
The remote IO module supports 1 isolated 10/100M adaptive Ethernet interface with 15KV ESD protection, optocoupler isolated digital input, and supports dry wet contact input. The first channel can be used as pulse counting, supporting high-speed pulse and low-speed pulse modes. The default is high-speed pulse frequency with a maximum of 700KHz, and the optional low-speed pulse frequency with a maximum of 10KHz; DO output supports transistor Sink output, with the first channel available for high-speed pulse output, supporting pulse frequencies of 10Hz~300KHz; The remote IO module supports isolated 12 bit resolution analog input: 0-5V, 0-10V, 0-20mA, 4-20mA differential input; 1 channel RS485 communication interface, supporting standard Modbus RTU protocol for expansion; The thermal resistance RTD input supports two types: PT100 and PT1000;
What are the common types of IO extension modules? How much does an IO expansion module usually cost?
2. Analog Input Output Module: A module used to process and monitor analog signal input and output. Common analog input and output modules include modules based on resistors, transistors, and optocouplers.
3. Communication Interface Module: A module used to achieve communication between devices. Common communication interface modules include modules based on interfaces such as RS232, RS485, Ethernet, and CAN.
4. Special Function Module: A module used to implement specific functions. For example, the PWM (Pulse Width Modulation) module is used to control the speed and direction of the motor, and the counting module is used to achieve counting functions.
The price of IO expansion modules may vary depending on different brands, models, and functions.
Generally speaking, the price of more basic IO expansion modules ranges from tens to hundreds of yuan, while the price of IO expansion modules with more complex functions and stronger performance may be higher.
For example, the Io extension module ET1010 recently released by Zongheng Intelligent Control Company costs only 169 yuan per unit, and supports functions such as front-end and back-end cascading, sensorless expansion, and plug and play. It can be purchased in bulk or applied for a free trial address; The specific prices of these IO modules need to be queried and compared based on the specific modules you need.
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts