Sale!

B5232-1 HIMA security module

¥666.00

B5232-1 HIMA security module
Brand: HIMA
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

B5232-1 HIMA security module
B5232-1 HIMA security module
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com

Soundproof box method
Use speakers, houses, and buildings to isolate noise sources inside, reducing the noise in the external environment to an acceptable range for people.
7. Series throttling method  B5232-1 HIMA security module
In situations where the pressure ratio of the regulating valve is high (△ P/P1 ≥ 0.8), the series throttling method is used to disperse the total pressure drop between the regulating valve and the fixed throttling element behind the valve. Using diffusers and multi hole flow limiting plates is the most effective way to reduce noise. In order to achieve the best diffuser efficiency, it is necessary to design the diffuser (physical shape and size) based on the installation of each component, so that the noise level generated by the valve is the same as that generated by the diffuser.
8. Choose a low noise valve
The noise valve gradually decelerates according to the zigzag flow path (multi orifice, multi groove) of the fluid passing through the valve core and valve seat to avoid supersonic flow at any point in the flow path. There are various forms and structures of low noise valves (designed for specialized systems) available for use. When the noise is not very loud, choosing a low noise sleeve valve can reduce the noise by 10-20 decibels, which is the most economical low noise valve.
6、 5 Methods to Solve Poor Stability of Regulating Valves
1. Method of changing the direction of unbalanced force action B5232-1 HIMA security module
In stability analysis, it is known that when the unbalanced force acts in the same direction as the valve closing, that is, when there is a tendency to close the valve, the valve stability is poor. When the valve operates under the above-mentioned unbalanced force conditions, the method of changing its direction of action is usually to change the flow closed type to the flow open type, which can easily solve the stability problem of the valve.
2. Method of avoiding unstable zone operation of the regulating valve itself
Some valves have poor stability when operating at certain opening angles due to their own structural limitations.
① Double seat valve with an opening of less than 10%, causing instability due to open flow at the upper ball and closed flow at the lower ball;
② The stability is poor near the area where the slope of the unbalanced force changes alternately. Like butterfly valves, the alternating point is around 70 degrees; The double seat valve has an opening of 80-90%. When encountering such valves, working in unstable areas inevitably results in poor stability, and avoiding working in unstable areas is sufficient.
3. Replace the valve with good stability
A valve with good stability has a small change in unbalanced force and good guidance. Among commonly used ball valves, sleeve valves have this major feature. When the stability of single or double seat valves is poor, replacing them with sleeve valves will definitely improve their stability.
4. Increase spring stiffness method
The ability of the actuator to resist the impact of load changes on the stroke depends on the spring stiffness. The greater the stiffness, the smaller the impact on the stroke, and the better the valve stability. Increasing spring stiffness is a common and simple method to improve valve stability, such as changing the spring range of 20-100KPa to a high stiffness spring of 60-180KPa. This method is mainly used for valves with locators, otherwise, the valves used need to be equipped with locators.
5. Reduce response speed method
When the system requires that the response or adjustment speed of the regulating valve should not be too fast, the response and adjustment speed of the valve are also fast. For example, if the flow needs to be fine tuned, but the flow adjustment change of the regulating valve is significant, or if the system itself is already a fast response system and the regulating valve is equipped with a locator to accelerate the valve”s action, this is unfavorable. This will result in overshoot, vibration, etc. To address this, the response speed should be reduced. The methods include:
① Change the flow characteristic of the regulating valve: change the linear characteristic to the logarithmic characteristic;
② The ones with locators can be changed to converters or relays.
7、 6 other problem-solving methods
1. Symmetrical tightening of bolts using thin gasket sealing method
In the structure of the “O” ring sealed regulating valve, when using thick gaskets with significant deformation (such as wound discs), if the compression is asymmetric and the force is asymmetric, it is easy to damage, tilt, and deform the seal, seriously affecting the sealing performance. Therefore, in the maintenance and assembly of such valves, it is necessary to symmetrically tighten the compression bolts (note that they cannot be tightened at once) . If a thick sealing gasket can be changed to a thin sealing gasket, it would be better to reduce the inclination and ensure sealing.
2. A method to increase the width of the sealing surface, prevent the jumping of the flat valve core when closed, and reduce its leakage
The flat valve core (such as the plug of a two-position valve or a sleeve valve) has no guiding or guiding surface inside the valve seat. When the valve is in operation, the valve core is subjected to lateral force, moving from the inlet side to the outlet side. The larger the clearance between the valve core and the valve core, the more severe this unilateral phenomenon is. In addition, deformation, non concentricity, or small chamfers on the sealing surface of the valve core (usually guided by a 30 ° chamfer) make it close to closure, The chamfered end face of the sealing surface of the valve core is placed on the sealing surface of the valve seat, causing the valve core to jump or even fail to close properly when closed, greatly increasing the leakage of the valve. The simplest and most effective solution is to increase the size of the valve core sealing surface, so that the minimum diameter of the valve core end face is 1-5mm smaller than the valve seat diameter, which has sufficient guiding effect to ensure that the valve core is guided into the valve seat and maintains good sealing surface contact.
3. Change the flow direction, solve the problem of promoting closure, and eliminate surge method
A two position valve is usually used as a flow closed type to improve the cutting effect. For liquid media, due to the unbalanced force of the flow closure type, the valve core is compressed and has a closing promoting effect, also known as suction effect, which accelerates the speed of the valve core action, produces a slight water hammer, and causes system surge. The solution to the above phenomenon is to simply change the flow direction to flow open, and the surge can be eliminated. Similar issues that affect the normal operation of the valve due to promoting closure can also be addressed by adopting this approach.
4. Overcoming fluid damage method
The most typical valve is a double seat valve, where fluid enters from the middle, the valve core is perpendicular to the inlet, and the fluid flows out in two bundles around the valve core. The fluid impacts the valve core, causing it to lean towards the outlet side, causing friction and damaging the guide surface of the valve core and liner, resulting in abnormal operation. High flow rates may also cause the valve core to bend, erode, and even break in severe cases. Solution:
① Improve the hardness of the guide material;
② Increase the size between the upper and lower balls of the valve core to make it appear thick;
③ Use other valves instead. If a sleeve valve is used, the fluid flows in from around the sleeve, greatly reducing the lateral thrust on the valve plug.
5. Method of overcoming the rotational force generated by the fluid to rotate the valve core
For the valve core of the “V” shaped port, due to the asymmetry of medium inflow, the tangential force acting on the valve core of the “V” shaped port is inconsistent, generating a rotational force that causes it to rotate. Especially for valves with DN ≥ 100, it is more intense. This may cause the valve to disconnect from the actuator push rod connection, and the spring free actuator may cause the diaphragm to twist. The solutions are:
① Rotate the valve core counterclockwise by an angle to balance the tangential force acting on the valve core;
② Further lock the connection between the valve stem and the push rod, and if necessary, add an anti rotation clamp plate;
③ Replace the valve core with a plunger shaped valve core with a V-shaped opening;
④ Adopting or changing to a sleeve structure;
⑤ If resonance causes rotation, eliminating resonance can solve the problem.
6. Adjust the friction force of the butterfly valve plate to overcome the opening and jumping method
Adopting “O” Butterfly valves with soft seals such as O-rings, sealing rings, and linings can achieve ideal shut-off effect when the valve is closed. Due to the deformation of the soft seal, the valve plate is closed in place and envelops the valve plate, which can achieve a very ideal shut-off effect. However, when the valve is to be opened, the force of the actuator to open the valve plate continuously increases. When the friction force between the soft seal and the valve plate is equal, the valve plate starts. Once started, this friction force decreases sharply. To achieve force balance, the valve plate is fierce When the unbalanced torque of the medium acting on the corresponding opening is balanced with the opening torque of the actuator, the valve stops at this opening. This violent and sudden jump opening can be as high as 30-50%, which will cause a series of problems. At the same time, due to significant changes in the soft sealing element during closure, it is easy to cause permanent deformation or be crushed or pulled by the valve plate, which affects the service life. The solution is to adjust the friction force of the soft seal on the valve plate during startup, which not only ensures the required cutoff, but also enables the valve to start normally. The specific methods include:
① Adjust the interference amount;
② By limiting or adjusting the pre tightening force and output force of the actuator, the difficulty of opening caused by excessive closing of the valve plate can be reduced.

1900/27 Mechanical protection system
134652-01 Transient Data Interface Card
330180-X1-05 Transient Data Interface Card
3500/05-02-04-00-00-00 Transient Data Interface Card
3500/42M 176449-02 Transient Data Interface Card
3500/50 133442-01 BENTLY NEVADA
3500/50-01-00-00 Mechanical protection system
3500/23E BENTLY NEVADA
24765-02-00 Mechanical protection system
330101-00-08-20-12-05 Framework interface module
3300/26 BENTLY NEVADA
1X35668 Framework interface module
3500/05-01-02-00-00-00 Mechanical protection system
3500/25-01-03-00 Transient Data Interface Card
330903-03-19-10-02-00 Mechanical protection system
3300/16-13-01-01-00-00-00 Mechanical protection system
330180-X1-CN BENTLY NEVADA
3500/32M 149986-02 Mechanical protection system
3500/50-01-00-00 BENTLY NEVADA
330850-50-05 BENTLY NEVADA
3500/92-02-01-00 Transient Data Interface Card
330854-040-24-00 BENTLY NEVADA
1900/65A 167699-02 Transient Data Interface Card
125680-01 Framework interface module
3500/32 125712-01 Transient Data Interface Card
3500/61-03-00 BENTLY NEVADA
BENTLY/NEVADA 330400-01-05 BENTLY NEVADA
3300/45 Transient Data Interface Card
330104-00-05-10-02-CN Transient Data Interface Card
330106-05-30-10-02-00 Mechanical protection system
126648-01 Framework interface module
149992-01 Mechanical protection system
135613-02 Mechanical protection system
3500/15 Framework interface module
1900/65A-01-02-01-00-00 Transient Data Interface Card
9200-01-01-10-00 BENTLY NEVADA
3500/45 Transient Data Interface Card
3500/25-01-01-00 BENTLY NEVADA
3500/92-02-01-00 Mechanical protection system
163179-02 Framework interface module
3500/42M 176449-02 BENTLY NEVADA
3500-53 Framework interface module
3500/50-01-00-01 Mechanical protection system
3500/22M 288055-01 BENTLY NEVADA
3500/33-1-00 Transient Data Interface Card
3300/47 Transient Data Interface Card
3500-92-02-01-00 BENTLY NEVADA
3500/42-01-00 Mechanical protection system
177992-01 Transient Data Interface Card
3500/22-01-02-00 BENTLY NEVADA
3500/34 BENTLY NEVADA
86517-01-01-01-02 Transient Data Interface Card
3300/16-14-01-03-00-00-01 Mechanical protection system
3300/20-12-01-01-00-00 Framework interface module
3500/53-03-00 Mechanical protection system
133819-01 Transient Data Interface Card
330180-91-00 BENTLY NEVADA
3500/50-01-00 BENTLY NEVADA
3500/34 Mechanical protection system
330180-51-00 Framework interface module
125840-01 BENTLY NEVADA
PWB78434-01 Framework interface module
3500/40 176449-01 BENTLY NEVADA
135137-01 Framework interface module
133442-01 BENTLY NEVADA
3500/22-02-01-00 Transient Data Interface Card
3500/05-01-03-00-00-00 Transient Data Interface Card
330703-000-070-10-02-05 BENTLY NEVADA
3500/93-01-00-00-00 Framework interface module
330106-05-30-10-02-00 Transient Data Interface Card
3500/22M 288055-01 Mechanical protection system
3500/50-04-00 BENTLY NEVADA
22810-01-05-50-02 Mechanical protection system
330104-00-05-10-02-00 BENTLY NEVADA
133819-01 Mechanical protection system
330100-90-00 BENTLY NEVADA
172109-01 Mechanical protection system
3500/25-01-01-00 Framework interface module
135473-01 BENTLY NEVADA
3500/05-02-04-00-00-00 Mechanical protection system
3500/32-A01-B01 Framework interface module
3300/16-11-01-03-00-00-01 Transient Data Interface Card
128275-01 Transient Data Interface Card
3500/20 125744-02 BENTLY NEVADA
3500/93 135785-02 BENTLY NEVADA
330180-50-00 Transient Data Interface Card
3500/15-02-00 Transient Data Interface Card
149369-01 Mechanical protection system
330180-90-05 BENTLY NEVADA
3500/92 136180-01 Transient Data Interface Card
128276-011 Mechanical protection system
35003500/42 140734-02H Mechanical protection system
1900/65 Framework interface module
149369-01 BENTLY NEVADA
125840-01 Transient Data Interface Card
3500/93 135813-01 Transient Data Interface Card
3500/44M 176449-03 BENTLY NEVADA
3500/15-01-01-00 Framework interface module
3500/40M ( 140734-01 ) BENTLY NEVADA
330851-02-000-040-10-01-CN Framework interface module
3500/15-05-05-00 BENTLY NEVADA
176449-02V BENTLY NEVADA
3500/33 149986-01 Framework interface module
190662-28 BENTLY NEVADA
3500/90 BENTLY NEVADA
123M4610 Transient Data Interface Card
3500/22M 138607-02 Transient Data Interface Card
3500/15-05-00-00 BENTLY NEVADA
330901-05-32-05-02-00 Transient Data Interface Card
3500/92 136180-01 Framework interface module
3300/85 Mechanical protection system
330180-X1-CN Transient Data Interface Card
1900/55 Mechanical protection system
3500/22M Framework interface module
163179-03 Framework interface module
135489-04 Framework interface module
3500/25-A01-B01-C00 Framework interface module
330180-91-05 Framework interface module
3500/65-01-00 BENTLY NEVADA
3300/03-01-00 Transient Data Interface Card
125800-02 Framework interface module
3300/30 Mechanical protection system
3500/92 136188-02 Mechanical protection system
125800-02 Mechanical protection system
330180-51-05 BENTLY NEVADA
330730-040-00-00 Transient Data Interface Card
3500/93 135813-01 BENTLY NEVADA
172109-01 Transient Data Interface Card
330130-040-00-00 BENTLY NEVADA
125736-01 Mechanical protection system
330780-90-00 Transient Data Interface Card
133323-01 BENTLY NEVADA
3500/25 Transient Data Interface Card
330704-000-040-10-02-00 Framework interface module
128718-01 BENTLY NEVADA
3500/50 Transient Data Interface Card
3500/22M-01-01-00 Transient Data Interface Card
3500/15-02-00-00 Transient Data Interface Card
3500/20 125744-02 Mechanical protection system
3500/50M 288062-02 Transient Data Interface Card
149986-01 Transient Data Interface Card
3500/22-01-01-00 Transient Data Interface Card
3500/23E Transient Data Interface Card
3500/34 125696-01 Mechanical protection system
330850-90-05 Mechanical protection system
3500/70M Mechanical protection system
3300/35 Framework interface module
132417-01 Framework interface module
3500/40M ( 140734-01 ) Framework interface module
3500/42M-01-00 Transient Data Interface Card
1900/65A ( 167699-02 ) BENTLY NEVADA
3500/50 133388-02 Framework interface module
3500/15 127610-01 BENTLY NEVADA
3500/60 Transient Data Interface Card
3300/20-12-01-03-00-00 BENTLY NEVADA
3500/93 Transient Data Interface Card
135489-01 Framework interface module
330878-90-00 Framework interface module
86517-01-01-01-02 BENTLY NEVADA
136180-01 Framework interface module
330180-50-05 Mechanical protection system
132417-01 Transient Data Interface Card
3500/93 135813-01 Mechanical protection system
3500/62-04-02 Mechanical protection system
330901-05-32-05-02-00 Framework interface module
60M100-00 Mechanical protection system
1900/65A 167699-02 Framework interface module
3500/64M 140734-05 BENTLY NEVADA
3300/36 Transient Data Interface Card

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts