Description
IS200DAMDG1A General Electric of the United States
IS200DAMDG1A General Electric of the United States
Module Clips Drive controller servo moto
IS200DAMDG1A General Electric of the United StatesSuitable for steel manufacturing, thermal power generation, hydroelectric power generation, nuclear power generation, wind power generation, gas supply, and other glass manufacturing, paper mills, mechanical manufacturing, electronic manufacturing, automotive manufacturing, aviation manufacturing, chemical manufacturing, coal mining and selection, oil and natural gas mining and selection, metal mining and selection, and non-metallic mining and selection
4.1 Surface acoustic waves
Surface acoustic wave, a type of ultrasonic wave, is a mechanical energy wave that propagates shallowly on the surface of a medium (such as
a rigid material such as glass or metal). Through the wedge-shaped triangular base (strictly designed according to the wavelength of the surface wave),
directional and small-angle surface acoustic wave energy emission can be achieved. Surface acoustic wave has stable performance, is easy to analyze,
and has very sharp frequency characteristics in the process of transverse wave transmission. In recent years, its application has developed rapidly in the
direction of non-destructive testing, imaging and de-wave devices. Theoretical research on surface acoustic waves, semiconductor materials, acoustic wave
Guidance materials, detection technology and other
technologies are already quite mature. The touch screen part of the surface acoustic wave touch screen can be a flat, spherical or cylindrical glass plate installed
in front of a CRT, LED, LCD or plasma display screen. Vertical and horizontal ultrasonic transmitting transducers are fixed on the upper left and lower right corners of
the glass screen, and two corresponding ultrasonic receiving transducers are fixed on the upper right corner. The four peripheries of the glass screen are engraved with
very precisely spaced reflection stripes at 45° angles from sparse to dense.
4.2 Working principle of surface acoustic wave touch screen
Take the X-axis transmitting transducer in the lower right corner as an example: The transmitting transducer converts the electrical signal sent from the controller through the touch screen
cable into sound wave energy and transmits it to the surface on the left, which is then reflected by a set of precision reflection stripes under the glass plate. The sound wave energy
is reflected into an upward uniform surface and transmitted. The sound wave energy passes through the surface of the screen, and then is gathered into a line to the right by the
upper reflection stripes and transmitted to the X-axis receiving transducer. The receiving transducer will return the surface acoustic wave. The energy becomes an electrical
signal. When the transmitting transducer emits a
narrow pulse, the sound wave energy reaches the receiving transducer through different paths. The one on the far right arrives earliest, and the one on the far left arrives last.
The early and late arrivals are superimposed into one For a wider waveform signal, it is not difficult to see that the received signal collects all the sound wave energy that has
returned after different long and short paths in the X-axis direction. The distance they have traveled on the Y-axis is the same, but on the The nearest one has traveled twice the
maximum distance on the X-axis. Therefore, the time axis of this waveform signal reflects the position of each original waveform before superposition, which is the X-axis
coordinate. When there is no touch, the waveform of the received signal is exactly the same as the reference waveform. When a finger or other object that can absorb or block
sound wave energy touches the screen, the sound wave energy traveling upward along the X-axis through the finger is partially absorbed, which is reflected in the received waveform
that is, there is an attenuation gap in the waveform at a certain moment. The received
waveform corresponds to the signal attenuation of a gap in the part blocked by the finger. Calculating the position of the gap means that the touch coordinate controller analyzes
the attenuation of the received signal and determines the X coordinate based on the position of the gap. Then the same process for the Y axis determines the Y coordinate
of the touch point. In addition to the X and Y coordinates that general touch screens can respond to, surface acoustic wave touch screens also respond to the third axis Z-axis
coordinates, which means they can sense the value of the user”s touch pressure. The principle is calculated from the attenuation of the received signal attenuation
Once the three axes are determined, the controller transmits them to the host.
4.3 Characteristics of surface acoustic wave touch screen
The clarity is higher and the light transmittance is good. Highly durable and good in scratch resistance (compared to surface film on resistors, capacitors, etc.). Very responsive.
Not affected by environmental factors such as temperature and humidity, high resolution and long life (50 million times with good maintenance); high light transmittance (92%),
able to maintain clear and translucent image quality; no drift, only required during installation One-time correction; there is a third axis (i.e. pressure axis) response, which is
currently used more in public places. Surface acoustic wave screens require regular maintenance,
because dust, oil and even beverage liquids contaminating the surface of the screen will block the wave guide groove on the surface of the touch screen, preventing the waves
from being emitted normally, or causing the waveform to change and the controller to be unable to recognize it normally, thus affecting the performance of the screen. For normal
use of the touch screen, users must pay strict attention to environmental hygiene. The surface of the screen must be wiped frequently to keep it smooth, and a complete wipe must be performed regularly.
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
3HAC020466-001 Robot spare parts ABB
DSQC627 Robot spare parts ABB
DSQC626 Robot spare parts ABB
DSQC609 Robot spare parts ABB
DSQC608 Robot spare parts ABB
DSQC602 Robot spare parts ABB
3HAC5687-1/06 Robot spare parts ABB
DSQC509 Robot spare parts ABB
DSQC509 3HAC5687-1/06 ABB
DSQC504 3HAC5689-1/04 ABB
3HAC5689-1/04 Robot spare parts ABB
DSQC504 Robot spare parts ABB
DSQC355A Robot spare parts ABB
DSQC354 Robot spare parts ABB
DSQC352 Robot spare parts ABB
DSQC346G Analog output board ABB
DSQC346B 3HAB8101-6/11A ABB
3HAB8101-6/11A Analog output board ABB
DSQC346B Analog output board ABB
DSQC327A Analog output board ABB
DSQC332A 3HAC17973-1/02 ABB
3HAC17973-1/02 Analog output board ABB
DSQC332A Analog output board ABB
DSQC322 Analog output board ABB
DSQC313 Analog output board ABB
DSQC202 Analog output board ABB
57360001-HG Analog output board ABB
DSMB127 Analog output board ABB
DSMB127 57360001-HG ABB
DSMB-02C 3AFE64666606 ABB
3AFE64666606 ABB Analog output board
DSMB-02C ABB Analog output board
DSIH72VPENOK ABB Analog output board
DSDX453 5716075-AN ABB
5716075-AN Analog output board ABB
DSDX453 Analog output board ABB
5716075-P Analog output board ABB
DSDX452 Analog output board ABB
DSDX452 5716075-P ABB
DSDX404 57160001-TE ABB
57160001-TE Analog output board ABB
DSDX404 Analog output board ABB
57160001-ADF Analog output board ABB
DSDP170 Analog output board ABB
DSDP170 57160001-ADF ABB
DSDP150 57160001-GF ABB
57160001-GF Analog output board ABB
DSDP150 Analog output board ABB
57160001-ACX Analog output board ABB
DSDP140B Analog output board ABB
DSDP140B 57160001-ACX ABB
DSDP140A 57160001-ACT ABB
57160001-ACT Analog output board ABB
DSDP140A Analog output board ABB
3BSE018298R1 Analog output board ABB
DSDO115A Analog output board ABB
DSDO115A 3BSE018298R1 ABB
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts