Sale!

PI3381 TRICONEX controller

¥666.00

PI3381 TRICONEX controller
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

PI3381 TRICONEX controller
PI3381 TRICONEX controller
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
Ethernet IO module assists industrial robots
Industrial robots are multi joint robotic arms or multi degree of freedom machine devices aimed at the industrial field, which can achieve many material distribution, retrieval, pallets, and so on in industrial sites. However, due to the fact that many industrial six axes are equipped with 32 IO ports as standard, the IO ports are not sufficient in practical applications. Therefore, some DIN and DO extensions can be met through IO modules.
MQTT Ethernet IO Remote ModulePI3381 TRICONEX controller
The Modbus TCP Ethernet IO module has multiple channels, such as 4-way, 8-way, and 16-way switch input and output options. The communication protocol of the Ethernet IO module adopts the standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. Can support LAN configuration, with 1 DC power output to other devices on site, reducing the difficulty and cost of on-site wiring.
Most of the MQTT Ethernet IO modules should collect some IO port information and transmit data through the network port. In fact, the Ethernet IO module can not only serve as a TCP server, but also as a TCP client. In addition, it can not only count high-speed pulses but also output high-PI3381 TRICONEX controllerspeed pulses. This is very convenient for doing some control processing on industrial sites, such as controlling servo motors and other scenarios! The most important thing is the data caching function. Even if the network is disconnected, it is not afraid. The data will be automatically cached, and after the network is restored, it will be automatically retransmitted.
The MxxxT industrial remote Ethernet I/O data acquisition module is embedded with a 32-bit high-performance microprocessor MCU, and integrates an industrial grade 10/100M adaptive Ethernet interface to support the standard Modbus protocol. It can easily integrate with third-party SCADA software, PLC, and HMI devices for application. Equipped with an RS485 interface, it has good scalability and can be cascaded with standard Modbus RTU I/O devices through the RS485 bus to achieve the combination of various digital, analog, and thermal resistance IO modules, saving costs. At the same time, this device has the function of cluster register mapping, and the data of the cluster is automatically collected into the mapping storage area of the local computer. The upper computer can respond quickly without waiting when querying, meeting the strict and timely functional requirements of industrial sites.
What is a remote IO module and what are its purposes
Technology is constantly evolving, and we can come into contact with various electronic devices both in daily life and in the workplace. And a large number of electronic devices work together to generate some signal sources. In order to better transmit and collect signals, industrial control products such as remote IO modules, signal transmitters, and signal acquisition modules have been developed.
In the past, people had to connect existing lines and boxes one at a time, which greatly increased the cost and construction time of cables. Moreover, if the distance was too long, they also had to face issues such as voltage attenuation. And through the remote IO module, this problem can be effectively solved.
If your cabinet is 200 meters away from the site and remote IO is not used, then you can extend each signal line by 200 meters and install the remote IO module on site, which can save you a lot of cable costs and reduce the complexity of construction.
In short, sometimes some IOs are set far away from the central control room and then connected back to the central control room through fiber optics to save on cable procurement and construction. Sometimes, the logical “remote” is because the allowed quantity of “local IO” cannot meet the actual needs, so it is necessary to connect to the “remote IO template”, which depends on the situation.
In addition, the general cabinet is placed on the equipment site. However, some control signals, such as emergency stop and bypass, are implemented in the control room, so remote IO modules need to be used to transmit these signals to the control system in the computer room.
What is an Ethernet IO module and what are its functions
The Ethernet IO module is a hardware gateway that adds IO to the network port.
The Ethernet IO module has hardware interfaces such as switches, analog signals, relays, RS485, RJ45, etc. Can be used for IO data collection network port transmission in industrial automation. Simply put, it refers to sensors with standard signals on site, or serial devices with 485 signals such as PLCs, which can be converted into real values through such gateways and then transmitted to the host for display through network ports.
1. Collect and control data for internal processing and transmit it to the external network through Ethernet
2. Support 4-way photoelectric isolation switch input
3. Supports 4 independent relay control outputs
4. Supports 8 analog inputs, 4-20mA or 0-5V/0-10V/0-30V (optional)
5. Support RS485 serial port data collection, with serial port server function
6. Supports Modbus RTU communication protocol and virtual serial port
7. Supports docking with various configuration software and TCP/UDP servers
Modify the watchdog time of the PROFINET IO device under 16 STEP7
3.2 Check if the installation of PROFINET IO communication equipment meets the specifications
Most cases of PROFINET IO communication interference problems are caused by equipment installation that does not comply with the installation specifications for PROFINET IO communication, such as incomplete shielding, unreliable grounding, and being too close to interference sources. Installation that meets the specifications can avoid communication failures caused by electromagnetic interference. You can refer to the following brief installation requirements for PROFINET:
1. Wiring of PROFINET PI3381 TRICONEX controller
In order to reduce the coupling of electric and magnetic fields, the larger the parallel distance between PROFINET and other power cable interference sources, the better. In accordance with IEC 61918, the minimum distance between PROFINET shielded cables and other cables can be referred to Table 1. PROFINET PI3381 TRICONEX controller can be wired together with other data cables, network cables, and shielded analog cables. If it is an unshielded power cable, the minimum distance is 200mm.
Comprehensive analysis of the principle and application skills of microcontroller IO port
IO port operation is the most basic and important knowledge in microcontroller practice. This article takes a long time to introduce the principles of IO ports. I also consulted a lot of materials to ensure the accuracy of the content, and spent a long time writing it. The principle of IO ports originally required a lot of in-depth knowledge, but here it has been simplified as much as possible for easy understanding. This will be of great help in solving various IO port related problems in the future.
The IO port equivalent model is my original method, which can effectively reduce the difficulty of understanding the internal structure of the IO port. And after consulting and confirming, this model is basically consistent with the actual working principle.
I mentioned a lot earlier, and many people may already be eager to actually operate microcontrollers. The IO port, as the main means of communication between the microcontroller and the outside world, is the most basic and important knowledge for microcontroller learning. Previously, we programmed and implemented an experiment to light up the LED at the IO port. This article will continue to introduce the relevant knowledge of the IO port.
In order to better learn the operation of IO ports, it is necessary to understand the internal structure and related concepts of IO ports. These knowledge are very helpful for subsequent learning, with a focus on understanding and no need to memorize them intentionally. If you don”t remember, just come back and take a look. If you use it too much, you will naturally remember.
We have said that the most accurate and effective way to understand a chip is to refer to official chip manuals and other materials. But for beginners of microcontrollers, it may be difficult to understand the chip manual directly, especially when they see a bunch of English, unfamiliar circuits, and terminology. If it were me, I would definitely be crazy. But here I still provide a picture taken from Atmel”s official “Atmel 8051 Microcontrollers Hardware Manual”.
The purpose of giving this picture is not to dampen everyone”s enthusiasm for learning, but to help everyone understand how the various microcontroller materials we have seen come from and whether they are accurate. All of these can be clarified through official information, which will be helpful for everyone to further learn something in the future.
Introduction to the Second Function
The above figure is the authoritative 51 microcontroller IO port structure diagram provided by the official. It can be seen that the internal structure of the four sets of IO ports of the microcontroller is different, because some IO ports have a secondary function, as mentioned in the introductory section.
Do you remember this pin diagram? The second function name of the IO port is marked in parentheses. Except for P1, each interface has a second function. When introducing the microcontroller system module, I mentioned that the 51 microcontroller has an interface for reserved extended memory, which is the second function of P0 and P1 in the figure (while also using pins such as 29 and 30). Because it is not widely used and involves in-depth knowledge, no specific research will be conducted. By the way, the AD0~AD7 we see here are actually used for parallel ports. The second function of the P3 port, including serial port, will be introduced in detail later.
The drawbacks of network IO and the advantages of multiplexing IO
In order to talk about multiplexing, of course, we still need to follow the trend and adopt a whiplash approach. First, we will talk about the drawbacks of traditional network IO and use the pull and step method to grasp the advantages of multiplexing IO.
For the convenience of understanding, all the following code is pseudo code, and it is sufficient to know the meaning it expresses.
Blocking IO
The server wrote the following code to handle the data of client connections and requests.
Listenfd=socket()// Open a network communication port
Bind (listenfd)// binding
Listen (listenfd)// Listening while (1){
Connfd=accept (listenfd)// Blocking connection establishment
Int n=read (connfd, buf)// Blocking read data
DoSomeThing (buf)// What to do with the data you read
Close (connfd)// Close the connection and wait for the next connection in a loop
}
This code will be executed with stumbling blocks, just like this.
It can be seen that the thread on the server is blocked in two places, one is the accept function and the other is the read function.
If we expand on the details of the read function again, we will find that it is blocked in two stages.
This is traditional blocking IO.
The overall process is shown in the following figure.
So, if the client of this connection continues to not send data, the server thread will continue to block on the read function and not return, nor will it be able to accept other client connections.
This is definitely not feasible.
Non blocking IO
To solve the above problem, the key is to modify the read function.
A clever approach is to create a new process or thread every time, call the read function, and perform business processing.
While (1){
Connfd=accept (listenfd)// Blocking connection establishment
Pthread_ Create (doWork)// Create a new thread
}
Void doWork(){
Int n=read (connfd, buf)// Blocking read data
DoSomeThing (buf)// What to do with the data you read
Close (connfd)// Close the connection and wait for the next connection in a loop
}
In this way, once a connection is established for a client, it can immediately wait for a new client connection without blocking the read request from the original client.
However, this is not called non blocking IO, it just uses multithreading to prevent the main thread from getting stuck in the read function and not going down. The read function provided by the operating system is still blocked.
So true non blocking IO cannot be achieved through our user layer tricks, but rather by imploring the operating system to provide us with a non blocking read function.
The effect of this read function is to immediately return an error value (-1) when no data arrives (reaches the network card and is copied to the kernel buffer), rather than waiting for blocking.
The operating system provides this feature by simply setting the file descriptor to non blocking before calling read.
Fcntl (connfd, F_SETFL, O_NONBLOCK);
Int n=read (connfd, buffer)= SUCCESS;
In this way, the user thread needs to loop through the call to read until the return value is not -1, and then start processing the business.
We noticed a detail here.
Non blocking read refers to the stage where data is non blocking before it reaches the network card, or before it reaches the network card but has not been copied to the kernel buffer.
When the data has reached the kernel buffer, calling the read function is still blocked and requires waiting for the data to be copied from the kernel buffer to the user buffer before returning.
The overall process is shown in the following figure
IO multiplexing
Creating a thread for each client can easily deplete the thread resources on the server side.
Of course, there is also a clever solution. After accepting each client connection, we can put the file descriptor (connfd) into an array.
Fdlist. add (connfd);
Then create a new thread to continuously traverse the array and call the non blocking read method for each element.
While (1){
For (fd “- fdlist){
If (read (fd)!=- 1){
DoSomeThing();
}
}
}
In this way, we successfully processed multiple client connections with one thread.
Do you think this means some multiplexing?
But this is just like using multithreading to transform blocked IO into seemingly non blocking IO. This traversal method is just a small trick that our users have come up with, and every time we encounter a read that returns -1, it is still a system call that wastes resources.
Making system calls in a while loop is not cost-effective, just like making rpc requests while working on distributed projects.
So, we still need to plead with the operating system boss to provide us with a function that has such an effect. We will pass a batch of file descriptors to the kernel through a system call, and the kernel layer will traverse them to truly solve this problem.

128718-01 Mechanical protection system
3500/64M 140734-05 Transient Data Interface Card
3500/64M 140734-05 Mechanical protection system
3300/46 Transient Data Interface Card
18745-03 Framework interface module
3500/94 Framework interface module
3500/93-02-02-02-00 BENTLY NEVADA
3500/05-01-03-00-00-00 Mechanical protection system
3500/40M 140734-01 Framework interface module
3300/65 BENTLY NEVADA
3500/50-01-00-02 Mechanical protection system
3300/20 BENTLY NEVADA
330878-90-00 Transient Data Interface Card
3500/33-01-00 Mechanical protection system
330130-080-00-00 Framework interface module
288055-01 Framework interface module
3500/64 Transient Data Interface Card
3500/22M-01-01-00 Mechanical protection system
3300/45 Framework interface module
3500/05-02-05-00-00-01 BENTLY NEVADA
1900/27 BENTLY NEVADA
330850-51-CN Framework interface module
3300/15 BENTLY NEVADA
3500/05-01-02-00-01 Transient Data Interface Card
3500/05-01-02-00-01 Framework interface module
3500/92-04-01-00 Mechanical protection system
3300/10-02-02-00 Transient Data Interface Card
330130-080-00-00 BENTLY NEVADA
172109-01 BENTLY NEVADA
163179-03 Mechanical protection system
584390 Framework interface module
BENTLY/NEVADA 330400-01-05 Framework interface module
135813-01 Framework interface module
330850-51-CN Mechanical protection system
3300/40 Framework interface module
190662-26 Transient Data Interface Card
330906-02-12-10-02-00 Framework interface module
330850-50-05 Mechanical protection system
3300/20-12-01-01-00-00 Mechanical protection system
3500/46M BENTLY NEVADA
3500/45 176449-04 Mechanical protection system
330709-000-070-10-02-00 Framework interface module
PWB78434-01 Transient Data Interface Card
133819-02 Mechanical protection system
3500/92 Transient Data Interface Card
136711-02 Mechanical protection system
128275-01-E Transient Data Interface Card
3500/33-01-01 Framework interface module
3500/32 Transient Data Interface Card
3500/32-A01-B01 BENTLY NEVADA
3500/53-03-00 Transient Data Interface Card
3500/92 136180-01 Mechanical protection system
125840-01 Framework interface module
140471-01 Mechanical protection system
3500/25 Mechanical protection system
3500/40-01-00 Mechanical protection system
128229-01 Mechanical protection system
3500/42 BENTLY NEVADA
3500/93 135785-01 Transient Data Interface Card
3300/20-12-01-03-00-00 Mechanical protection system
149369-01 Framework interface module
330730-040-00-00 Framework interface module
3500/15E Mechanical protection system
3500/61 163179-02 BENTLY NEVADA
133396-01 Transient Data Interface Card
3500/20 Mechanical protection system
330180-91-00 Mechanical protection system
330180-51-05 Transient Data Interface Card
330180-51-00 Mechanical protection system
133434-01 Mechanical protection system
135613-02 Transient Data Interface Card
1900/65A-00-04-01-00-00 Framework interface module
3500/53-01-00 Mechanical protection system
330851-02-000-070-50-00-05 Framework interface module
130539-30 Framework interface module
3500/25-A01-B01-C00 BENTLY NEVADA
1900/65A-01-00-01-00-00 Transient Data Interface Card
136188-02 Framework interface module
114M5330-01 Transient Data Interface Card
330851-02-000-040-10-01-CN Transient Data Interface Card
3500/40M BENTLY NEVADA
3300/48 BENTLY NEVADA
3500/25-01-05-00 Mechanical protection system
330901-00-40-05-02-05 Mechanical protection system
136719-01 Transient Data Interface Card
584390 Mechanical protection system
81545-01 BENTLY NEVADA
330902-00-40-10-02-00 BENTLY NEVADA
3500/32-01-00 Mechanical protection system
3500/93 135785-02 Framework interface module
177313-02-02 Transient Data Interface Card
3500/94 Transient Data Interface Card
1900/55 Framework interface module
330108-91-05 Mechanical protection system
3300/20-12-01-01-00-00 Transient Data Interface Card
3500/64M Mechanical protection system
35003500/42 140734-02H Framework interface module
3500/01 129133-01 Framework interface module
3500/50-04-00 Framework interface module
1900/65A-00-00-02-00-01 BENTLY NEVADA
3500/15 133292-01 Transient Data Interface Card
128276-011 BENTLY NEVADA
3500/50-01-00-00 Transient Data Interface Card
3500/22M 138607-02 Mechanical protection system
125680-01 BENTLY NEVADA
3500/15 106M1079-01 Mechanical protection system
3500/40M 176449-01 Mechanical protection system
3500/15E Framework interface module
3500/92-02-01-00 BENTLY NEVADA
3500/22M BENTLY BENTLY NEVADA
130539-30 Mechanical protection system
3300/03-01-00 BENTLY NEVADA
330703-000-050-10-11-00 Framework interface module
330130-045-00-00 BENTLY NEVADA
136188-02 BENTLY NEVADA
3500/15-01-01-00 Mechanical protection system
3500/25-01-01 BENTLY NEVADA
3500/50-01-00-00 Framework interface module
3500/22M-01-01-00 BENTLY NEVADA
3500/65 BENTLY NEVADA
3300/47 Framework interface module
3500/93 135799-01 Framework interface module
330850-50-00 Mechanical protection system
3500-92-02-01-00 Framework interface module
126648-01 Transient Data Interface Card
177897-01 Transient Data Interface Card
3500/40M 176449-01 Framework interface module
3300/03-01-00 Mechanical protection system
330104-00-05-10-02-CN Mechanical protection system
3300/20-05-03-01-00-00 Transient Data Interface Card
3500/45 176449-04 Transient Data Interface Card
3500/95 BENTLY NEVADA
177896-01 Framework interface module
3500/42M-01-00 BENTLY NEVADA
3300/16 Transient Data Interface Card
3500/45 176449-04 Framework interface module

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts