Description
SB145/30/08/05/24/S/3B/64/EAKN ELAU servo driver/motor
SB145/30/08/05/24/S/3B/64/EAKN ELAU servo driver/motor
Module Clips Drive controller servo moto
SB145/30/08/05/24/S/3B/64/EAKN Motor is a device that converts electrical energy into mechanical energy.
It uses energized coils (i.e. stator windings) to generate a rotating magnetic field and applies it to the rotor (such as a squirrel cage closed aluminum frame) to form a magnetic electric rotational torque.
SB145/30/08/05/24/S/3B/64/EAKN Electric motors are divided into DC motors and AC motors according to their power sources. Most electric motors in the power system are AC motors,
which can be synchronous motors or asynchronous motors (the stator magnetic field speed and rotor rotation speed of the motor do not maintain synchronous speed).
The SB145/30/08/05/24/S/3B/64/EAKN electric motor is mainly composed of a stator and a rotor. The direction of force movement of the energized wires in the magnetic field is related to the direction
of the current and the direction of the magnetic field lines (magnetic field direction). The working principle of an electric motor is that the magnetic field exerts force on the current, causing the motor to rotate.
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016. This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality, efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived. Through the deep learning function of GPU, it will stimulate a new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology, IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco’s UCS server – the system runs based on FANUC and Cisco’s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and equipment are processed in real time on the network, which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to build an Internet of Things system that will allow FANUC to supervise every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has tested 2,500 robots, including FANUC’s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its robot strategy and established two joint venture subsidiaries with Japan’s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co., Ltd. (Midea’s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea’s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
3500/22M 288055-01 Transient Data Interface BENTLY
3500/92 136180-01 BENTLY vibration monitoring system
3500/92 136180-01 Temperature monitor BENTLY
136188-02 Transient Data Interface BENTLY
125680-01 BENTLY overspeed protection module
3500/42-01-00 BENTLY vibration monitoring system
3500/33 149986-01 Temperature monitor BENTLY
136188-02 Temperature monitor BENTLY
3500/93 135799-01 BENTLY vibration monitoring system
85515-02 BENTLY overspeed protection module
3500/25 149369-01 Transient Data Interface BENTLY
3500/93 BENTLY overspeed protection module
133442-01 BENTLY vibration monitoring system
146031-01 Transient Data Interface BENTLY
3500/20 125768-01 Transient Data Interface BENTLY
3500/15 127610-01 BENTLY vibration monitoring system
1900/65A-00-00-01-00-00 BENTLY overspeed protection module
128275-01 Temperature monitor BENTLY
3500/22M 288055-01 Temperature monitor BENTLY
3500/22M 146031-01 BENTLY overspeed protection module
3500/05-01-01-00-00-00 BENTLY4 Channel Relay Module
3500/53 133388-01 Transient Data Interface BENTLY
3500/77M 176449-07 Transient Data Interface BENTLY
125840-01 BENTLY vibration monitoring system
3500/25-01-02-01 Temperature monitor BENTLY
3500/22-01-01-00 138607-01 Temperature monitor BENTLY
3500/93 135785-01 BENTLY4 Channel Relay Module
3500/15 114M5330-01 BENTLY overspeed protection module
3500/22-01-01-CN Temperature monitor BENTLY
3500/05-01-02-00-00-00 BENTLY vibration monitoring system
140471-01 BENTLY overspeed protection module
3500/70M 140734-09 Transient Data Interface BENTLY
1900/65A-00-01-01-00-00 Temperature monitor BENTLY
125680-01 BENTLY vibration monitoring system
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts